{"title":"Estimation of non-smooth non-parametric estimating equations models with dependent data","authors":"Francesco Bravo","doi":"10.1111/jtsa.12758","DOIUrl":null,"url":null,"abstract":"<p>This article considers estimation of non-smooth possibly overidentified non-parametric estimating equations models with weakly dependent data. The estimators are based on a kernel smoothed version of the generalized empirical likelihood and the generalized method of moments approaches. The article derives the asymptotic normality of both estimators and shows that the proposed local generalized empirical likelihood estimator is more efficient than the local generalized moment estimator unless a two-step procedure is used. The article also proposes novel tests for the correct specification of the considered model that are shown to have power against local alternatives and are consistent against fixed alternatives. Monte Carlo simulations and an empirical application illustrate the finite sample properties and applicability of the proposed estimators and test statistics.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"46 1","pages":"59-80"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12758","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This article considers estimation of non-smooth possibly overidentified non-parametric estimating equations models with weakly dependent data. The estimators are based on a kernel smoothed version of the generalized empirical likelihood and the generalized method of moments approaches. The article derives the asymptotic normality of both estimators and shows that the proposed local generalized empirical likelihood estimator is more efficient than the local generalized moment estimator unless a two-step procedure is used. The article also proposes novel tests for the correct specification of the considered model that are shown to have power against local alternatives and are consistent against fixed alternatives. Monte Carlo simulations and an empirical application illustrate the finite sample properties and applicability of the proposed estimators and test statistics.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.