{"title":"Stratification in drying films: Diffusiophoresis driven by nanoparticles and their counterions","authors":"Clare R. Rees-Zimmerman, Alexander F Routh","doi":"10.1093/imamat/hxae015","DOIUrl":null,"url":null,"abstract":"\n Recent experimental work has highlighted that electrolyte-driven diffusiophoresis is likely to be the most significant phoretic motion in a mixture of silica nanoparticles and relatively large latex particles, which are commonly used in coatings. In this present work, this diffusiophoretic effect, powered by gradients in the nanoparticles and their stabilising cations, is modelled in drying films. A continuum hydrodynamic model is derived, and the resulting partial differential equations solved numerically. An asymptotic solution is found for high evaporation rate. It is found that the final film structure is governed by the relative magnitudes of the diffusive and diffusiophoretic terms. Two methods are discovered to control the resulting stratification: (i) setting the surface charge on the particles, and (ii) setting the background salt concentration. Either of these can be used to select either small- or large-on-top stratification or a homogenous film. The diffusiophoretic term promotes small-on-top stratification, and so may account for experimental observations of accumulated small particles at the top surface of dried films.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxae015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Recent experimental work has highlighted that electrolyte-driven diffusiophoresis is likely to be the most significant phoretic motion in a mixture of silica nanoparticles and relatively large latex particles, which are commonly used in coatings. In this present work, this diffusiophoretic effect, powered by gradients in the nanoparticles and their stabilising cations, is modelled in drying films. A continuum hydrodynamic model is derived, and the resulting partial differential equations solved numerically. An asymptotic solution is found for high evaporation rate. It is found that the final film structure is governed by the relative magnitudes of the diffusive and diffusiophoretic terms. Two methods are discovered to control the resulting stratification: (i) setting the surface charge on the particles, and (ii) setting the background salt concentration. Either of these can be used to select either small- or large-on-top stratification or a homogenous film. The diffusiophoretic term promotes small-on-top stratification, and so may account for experimental observations of accumulated small particles at the top surface of dried films.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.