Feasibility study of adding alkali activator Ca(OH)2 into ferrous extraction tailing of nickel slag-ordinary Portland cement composite cementitious system: working performance, mechanical properties, and reaction mechanism
{"title":"Feasibility study of adding alkali activator Ca(OH)2 into ferrous extraction tailing of nickel slag-ordinary Portland cement composite cementitious system: working performance, mechanical properties, and reaction mechanism","authors":"Yanning Song, Hong-zhuo Qiao, Qiong Feng, Chao Wei, Jianghua Zheng, Hong-zhuo Qiao","doi":"10.1680/jadcr.23.00168","DOIUrl":null,"url":null,"abstract":"To solve the problem of low early-phase reactivity of ferrous extraction tailing of nickel slag (FETNS), the effects of Ca(OH)2 as an alkali activator on the working performance, mechanical properties, and hydration products of FETNS-ordinary Portland cement (OPC) composite cementitious system were studied. The results show that the addition of Ca(OH)2 shortens the initial setting time of the composite cementitious system by about 40% and the final setting time by about 20%. The compressive strength at 3d, 7d, 28d and 60d is increased by 51.95%, 45.27%, 8.53% and 8.9%, respectively. The microstructure inside the pastes is characterized by scanning electron microscopy (SEM). X-ray diffraction (XRD), simultaneous thermal analysis (TG-DTG), nitrogen adsorption test (N2-Sorption isotherm), and low-field nuclear magnetic resonance (LF-NMR) analysis show that the incorporation of Ca(OH)2 increases the reaction degree of the composite cementitious system, and more C-S-H gel and ettringite (AFt) are generated to fill the internal pores, which improve the compactness of the structure. The incorporation of Ca(OH)2 can stimulate the early-phase reactivity of the composite cementitious system, promote the formation of reaction products, and optimize the internal pore structure.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem of low early-phase reactivity of ferrous extraction tailing of nickel slag (FETNS), the effects of Ca(OH)2 as an alkali activator on the working performance, mechanical properties, and hydration products of FETNS-ordinary Portland cement (OPC) composite cementitious system were studied. The results show that the addition of Ca(OH)2 shortens the initial setting time of the composite cementitious system by about 40% and the final setting time by about 20%. The compressive strength at 3d, 7d, 28d and 60d is increased by 51.95%, 45.27%, 8.53% and 8.9%, respectively. The microstructure inside the pastes is characterized by scanning electron microscopy (SEM). X-ray diffraction (XRD), simultaneous thermal analysis (TG-DTG), nitrogen adsorption test (N2-Sorption isotherm), and low-field nuclear magnetic resonance (LF-NMR) analysis show that the incorporation of Ca(OH)2 increases the reaction degree of the composite cementitious system, and more C-S-H gel and ettringite (AFt) are generated to fill the internal pores, which improve the compactness of the structure. The incorporation of Ca(OH)2 can stimulate the early-phase reactivity of the composite cementitious system, promote the formation of reaction products, and optimize the internal pore structure.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.