Quantifying the influence of atmospheric rivers on rainfall over the Jianghuai River Basin during the 2022 Mei‐yu season

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Quarterly Journal of the Royal Meteorological Society Pub Date : 2024-06-05 DOI:10.1002/qj.4758
Y. Zhang, Y. Han, Y. Xuan, H. Zhou, H. Gao, N. Yang
{"title":"Quantifying the influence of atmospheric rivers on rainfall over the Jianghuai River Basin during the 2022 Mei‐yu season","authors":"Y. Zhang, Y. Han, Y. Xuan, H. Zhou, H. Gao, N. Yang","doi":"10.1002/qj.4758","DOIUrl":null,"url":null,"abstract":"Atmospheric rivers (ARs) are narrow, elongated belts of intense water vapor transport that often occur in mid‐latitude areas and are the primary drivers of heavy precipitation in these regions. This study investigates the impact of ARs on precipitation patterns in the Jianghuai River Basin during the Mei‐yu period. Focusing on a specific rainstorm event on June 27, 2022, we analyze atmospheric circulation, water vapor attributes, and transport trajectories. Three distinct classes of grids (Class A, significantly influenced by ARs; Class B, moderately affected; and Class C, untouched by ARs) are identified based on their response to ARs. Class A grids, located centrally, experience substantial precipitation, with a higher probability of rainstorm events. Class B grids, situated at a distance from ARs, exhibit moderate precipitation and a longer duration of rainy days. Class C grids, minimally affected by ARs, experience minimal precipitation with almost no chance of rainstorm events. The results from grid‐based analysis emphasize the localized influence of ARs, indicating a 8–30 times increase in precipitation intensity of Class A compared to Class C. The 23‐day Mei‐yu period is further categorized into AR days and non‐AR days, revealing that ARs amplify precipitation intensity by 2–5 times on average. Grid‐based and day‐based analyses provide complementary insights, with the former offering a broader spatial perspective and the latter emphasizing temporal distinctions. These findings underscore the nuanced influence of ARs on precipitation, emphasizing their role in extreme events and highlighting the importance of considering both spatial and temporal factors in understanding precipitation variability.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4758","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atmospheric rivers (ARs) are narrow, elongated belts of intense water vapor transport that often occur in mid‐latitude areas and are the primary drivers of heavy precipitation in these regions. This study investigates the impact of ARs on precipitation patterns in the Jianghuai River Basin during the Mei‐yu period. Focusing on a specific rainstorm event on June 27, 2022, we analyze atmospheric circulation, water vapor attributes, and transport trajectories. Three distinct classes of grids (Class A, significantly influenced by ARs; Class B, moderately affected; and Class C, untouched by ARs) are identified based on their response to ARs. Class A grids, located centrally, experience substantial precipitation, with a higher probability of rainstorm events. Class B grids, situated at a distance from ARs, exhibit moderate precipitation and a longer duration of rainy days. Class C grids, minimally affected by ARs, experience minimal precipitation with almost no chance of rainstorm events. The results from grid‐based analysis emphasize the localized influence of ARs, indicating a 8–30 times increase in precipitation intensity of Class A compared to Class C. The 23‐day Mei‐yu period is further categorized into AR days and non‐AR days, revealing that ARs amplify precipitation intensity by 2–5 times on average. Grid‐based and day‐based analyses provide complementary insights, with the former offering a broader spatial perspective and the latter emphasizing temporal distinctions. These findings underscore the nuanced influence of ARs on precipitation, emphasizing their role in extreme events and highlighting the importance of considering both spatial and temporal factors in understanding precipitation variability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量化大气河流对 2022 年梅雨季江淮流域降雨的影响
大气河流(ARs)是一种狭长的强烈水汽输送带,经常出现在中纬度地区,是这些地区强降水的主要驱动力。本研究探讨了梅雨期大气河流对江淮流域降水模式的影响。我们以 2022 年 6 月 27 日的一次特定暴雨事件为重点,分析了大气环流、水汽属性和输送轨迹。根据网格对大气环流的响应,确定了三类不同的网格(A 类,受大气环流影响较大;B 类,受大气环流影响一般;C 类,未受大气环流影响)。A 级网格位于中心位置,降水量大,发生暴雨事件的概率较高。B 级电网与 AR 相距较远,降水量适中,雨天持续时间较长。C 类网格受 AR 影响最小,降水量极小,几乎不可能出现暴雨事件。基于网格的分析结果显示,A 类网格的降水强度比 C 类网格增加了 8-30 倍。基于网格和基于日的分析提供了互补的见解,前者提供了更广阔的空间视角,后者强调了时间上的区别。这些发现强调了自回归对降水的细微影响,强调了自回归在极端事件中的作用,并突出了在理解降水变异性时考虑空间和时间因素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
期刊最新文献
Multivariate post‐processing of probabilistic sub‐seasonal weather regime forecasts Relationship between vertical variation of cloud microphysical properties and thickness of the entrainment interfacial layer in Physics of Stratocumulus Top stratocumulus clouds Characteristics and trends of Atlantic tropical cyclones that do and do not develop from African easterly waves Teleconnection and the Antarctic response to the Indian Ocean Dipole in CMIP5 and CMIP6 models First trial for the assimilation of radiance data from MTVZA‐GY on board the new Russian satellite meteor‐M N2‐2 in the CMA‐GFS 4D‐VAR system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1