Md. Habibul Huq, Md Mafizur Rahman, G. M. J. Hasan
{"title":"Climate-resilient urban drainage planning: an approach using a GIS-based SCS-CN model","authors":"Md. Habibul Huq, Md Mafizur Rahman, G. M. J. Hasan","doi":"10.2166/wcc.2024.616","DOIUrl":null,"url":null,"abstract":"\n \n Inexorable urbanization continues apace across the world and urban flooding in megacities is now frequently evidenced due to extreme rainfall events due to climate change (CC). Climate-resilient urban drainage planning is critical towards making sustainable cities or any new urbanization. This paper presents an approach through an insightful assessment of climate resilient urban drainage applying GIS-based Soil Conservation Service-Curve Number (SCS-CN) model of a new urban growth of megacity Dhaka, Bangladesh. A precise DEM (Digital Elevation Model) of the study area has been used for catchment delineation using ArcSWAT. Localized climate anomalies of rainfall of around 11% have been identified during monsoon from statistical downscaling and included in the cumulative rainfall event of 5 days. The effect of historical and CC-induced rainfall have been used to identify and map the peak discharges of sub-catchments considering the return period of 5-day cumulative rainfall for 10, 25, and 100 years of the urban catchment for both existing and future land-use scenarios accounting for the change in CN. The varying results of the peak discharges of the sub-catchments for resilient drainage planning is not only dependent on the increase in rainfall but also the combined response of the land-use and soil profile.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.616","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Inexorable urbanization continues apace across the world and urban flooding in megacities is now frequently evidenced due to extreme rainfall events due to climate change (CC). Climate-resilient urban drainage planning is critical towards making sustainable cities or any new urbanization. This paper presents an approach through an insightful assessment of climate resilient urban drainage applying GIS-based Soil Conservation Service-Curve Number (SCS-CN) model of a new urban growth of megacity Dhaka, Bangladesh. A precise DEM (Digital Elevation Model) of the study area has been used for catchment delineation using ArcSWAT. Localized climate anomalies of rainfall of around 11% have been identified during monsoon from statistical downscaling and included in the cumulative rainfall event of 5 days. The effect of historical and CC-induced rainfall have been used to identify and map the peak discharges of sub-catchments considering the return period of 5-day cumulative rainfall for 10, 25, and 100 years of the urban catchment for both existing and future land-use scenarios accounting for the change in CN. The varying results of the peak discharges of the sub-catchments for resilient drainage planning is not only dependent on the increase in rainfall but also the combined response of the land-use and soil profile.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.