Detection of Precursors of Thermoacoustic Instability in a Swirled Combustor Using Chaotic Analysis and Deep Learning Models

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE Aerospace Pub Date : 2024-06-05 DOI:10.3390/aerospace11060455
Boqi Xu, Zhiyu Wang, Hongwu Zhou, Wei Cao, Zhan Zhong, Weidong Huang, Wansheng Nie
{"title":"Detection of Precursors of Thermoacoustic Instability in a Swirled Combustor Using Chaotic Analysis and Deep Learning Models","authors":"Boqi Xu, Zhiyu Wang, Hongwu Zhou, Wei Cao, Zhan Zhong, Weidong Huang, Wansheng Nie","doi":"10.3390/aerospace11060455","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of chaotic analysis and deep learning models in combustion instability predictions. To detect the precursors of impending thermoacoustic instability (TAI) in a swirled combustor with various fuel injection strategies, a data-driven framework is proposed in this study. Based on chaotic analysis, a recurrence matrix derived from combustion system is used in deep learning models, which are able to detect precursors of TAI. More specifically, the ResNet-18 network model is trained to predict the proximity of unstable operation conditions when the combustion system is still stable. The proposed framework achieved state-of-the-art 91.06% accuracy in prediction performance. The framework has potential for practical applications to avoid an unstable operation domain in active combustion control systems and, thus, can offer on-line information on the margin of the combustion instability.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060455","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the role of chaotic analysis and deep learning models in combustion instability predictions. To detect the precursors of impending thermoacoustic instability (TAI) in a swirled combustor with various fuel injection strategies, a data-driven framework is proposed in this study. Based on chaotic analysis, a recurrence matrix derived from combustion system is used in deep learning models, which are able to detect precursors of TAI. More specifically, the ResNet-18 network model is trained to predict the proximity of unstable operation conditions when the combustion system is still stable. The proposed framework achieved state-of-the-art 91.06% accuracy in prediction performance. The framework has potential for practical applications to avoid an unstable operation domain in active combustion control systems and, thus, can offer on-line information on the margin of the combustion instability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混沌分析和深度学习模型检测漩涡式燃烧器中的热声不稳定性前兆
本文研究了混沌分析和深度学习模型在燃烧不稳定性预测中的作用。为了检测采用不同燃料喷射策略的漩涡燃烧器中即将发生的热声不稳定性(TAI)的前兆,本研究提出了一个数据驱动框架。在混沌分析的基础上,将燃烧系统衍生的递归矩阵用于深度学习模型,该模型能够检测 TAI 的前兆。更具体地说,ResNet-18 网络模型经过训练,可以在燃烧系统仍然稳定时预测不稳定运行条件的临近程度。所提出的框架在预测性能方面达到了最先进的 91.06% 的准确率。该框架具有实际应用的潜力,可避免主动燃烧控制系统出现不稳定运行域,从而提供有关燃烧不稳定裕度的在线信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
期刊最新文献
On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data Assessment of Flyby Methods as Applied to Close Encounters among Asteroids A Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth Observation Satellites Numerical Study on Far-Field Noise Characteristic Generated by Wall-Mounted Swept Finite-Span Airfoil within Transonic Flow Number of Blades’ Influence on the Performance of Rotor with Equal Solidity in Open and Shrouded Configurations: Experimental Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1