{"title":"Membership-dependent polynomial fuzzy control of a positive discrete time system: A symbol transfer technique","authors":"","doi":"10.1016/j.isatra.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>This work explores the polynomial fuzzy stabilization for positive systems. The traditional quadratic Lyapunov function and basic stability analysis may not be favourable for stability investigation due to the absence of the positivity property and membership functions. Therefore, a fuzzy co-positive polynomial Lyapunov–Krasovskii (FCPL) function which considers the positivity is proposed firstly through an imperfect premise matching (IPM) approach. Secondly, the symbol transfer technique which takes into account fuzzy membership knowledge relaxes the stability conditions. The number of symbols is reduced by two constraints: (1) the last and next moments of the membership functions of the FCPL function; (2) membership functions of the fuzzy model and the controller. Finally, the polynomial fuzzy controller with symbols is obtained. Two examples are implemented to verify the proposed methods.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 212-220"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002842","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the polynomial fuzzy stabilization for positive systems. The traditional quadratic Lyapunov function and basic stability analysis may not be favourable for stability investigation due to the absence of the positivity property and membership functions. Therefore, a fuzzy co-positive polynomial Lyapunov–Krasovskii (FCPL) function which considers the positivity is proposed firstly through an imperfect premise matching (IPM) approach. Secondly, the symbol transfer technique which takes into account fuzzy membership knowledge relaxes the stability conditions. The number of symbols is reduced by two constraints: (1) the last and next moments of the membership functions of the FCPL function; (2) membership functions of the fuzzy model and the controller. Finally, the polynomial fuzzy controller with symbols is obtained. Two examples are implemented to verify the proposed methods.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.