{"title":"Quality achhi hai (is good), satisfied! Towards aspect based sentiment analysis in code-mixed language","authors":"Mamta , Asif Ekbal","doi":"10.1016/j.csl.2024.101668","DOIUrl":null,"url":null,"abstract":"<div><p>Social media, e-commerce, and other online platforms have witnessed tremendous growth in multilingual users. This requires addressing the code-mixing phenomenon, i.e. mixing of more than one language for providing a rich native user experience. User reviews and comments may benefit service providers in terms of customer management. Aspect based Sentiment Analysis (ABSA) provides a fine-grained analysis of these reviews by identifying the aspects mentioned and classifies the polarities (i.e., positive, negative, neutral, and conflict). The research in this direction has mainly focused on resource-rich monolingual languages like English, which does not suffice for analyzing multilingual code-mixed reviews. In this paper, we introduce a new task to facilitate the research on code-mixed ABSA. We offer a benchmark setup by creating a code-mixed Hinglish (i.e., mixing of Hindi and English) dataset for ABSA, which is annotated with aspect terms and their sentiment values. To demonstrate the effective usage of the dataset, we develop several deep learning based models for aspect term extraction and sentiment analysis, and establish them as the baselines for further research in this direction. <span><sup>1</sup></span></p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101668"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000512/pdfft?md5=d4cf7f510d6f46e21b19e99b8421ebc3&pid=1-s2.0-S0885230824000512-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000512","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Social media, e-commerce, and other online platforms have witnessed tremendous growth in multilingual users. This requires addressing the code-mixing phenomenon, i.e. mixing of more than one language for providing a rich native user experience. User reviews and comments may benefit service providers in terms of customer management. Aspect based Sentiment Analysis (ABSA) provides a fine-grained analysis of these reviews by identifying the aspects mentioned and classifies the polarities (i.e., positive, negative, neutral, and conflict). The research in this direction has mainly focused on resource-rich monolingual languages like English, which does not suffice for analyzing multilingual code-mixed reviews. In this paper, we introduce a new task to facilitate the research on code-mixed ABSA. We offer a benchmark setup by creating a code-mixed Hinglish (i.e., mixing of Hindi and English) dataset for ABSA, which is annotated with aspect terms and their sentiment values. To demonstrate the effective usage of the dataset, we develop several deep learning based models for aspect term extraction and sentiment analysis, and establish them as the baselines for further research in this direction. 1
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.