Chao Guo , Shiwen Hu , Pengfei Cheng, Kuan Cheng, Yang Yang, Guojun Chen, Qi Wang, Ying Wang, Tongxu Liu
{"title":"Speciation and biogeochemical behavior of perfluoroalkyl acids in soils and their environmental implications: A review","authors":"Chao Guo , Shiwen Hu , Pengfei Cheng, Kuan Cheng, Yang Yang, Guojun Chen, Qi Wang, Ying Wang, Tongxu Liu","doi":"10.1016/j.eehl.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>Perfluoroalkyl acids (PFAAs) are emerging organic pollutants that have attracted significant attention in the fields of environmental chemistry and toxicology. Although PFAAs are pervasive in soils and sediments, there is a paucity of research regarding their environmental forms and driving mechanisms. This review provides an overview of the classification and biotoxicity of per- and polyfluoroalkyl substances (PFAS), organic pollutant forms, PFAS extraction and analytical methods, the prediction of PFAS distribution in soils, and current PFAS remediation strategies. Four predominant PFAA forms have been proposed in soils: (i) aqueous-extracted PFAAs, (ii) organic-solvent extracted PFAAs, (iii) embedded or sequestered PFAAs, and (iv) covalently bound PFAAs. Furthermore, it suggests suitable extraction methods and predictive models for different PFAA forms, which are instrumental in the research on PFAA speciation and prediction in soils. Simultaneously, it was proposed that elemental cycling and microbial activity may affect the speciation of PFAS. Additionally, the categorization of PFAA forms facilitated the analysis of pollution remediation. Understanding the interplay between PFAA speciation, element cycling, and bacterial activity during soil remediation is essential for understanding remediation mechanisms and assessing the long-term stability of remediation methods. Future studies should expand the investigation of varying PFAA forms in different media, consider the potential binding forms of PFAAs to minerals, organic matter, and microbes, and evaluate the possible mechanisms of PFAA speciation variation.</div></div>","PeriodicalId":29813,"journal":{"name":"Eco-Environment & Health","volume":"3 4","pages":"Pages 505-515"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eco-Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772985024000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluoroalkyl acids (PFAAs) are emerging organic pollutants that have attracted significant attention in the fields of environmental chemistry and toxicology. Although PFAAs are pervasive in soils and sediments, there is a paucity of research regarding their environmental forms and driving mechanisms. This review provides an overview of the classification and biotoxicity of per- and polyfluoroalkyl substances (PFAS), organic pollutant forms, PFAS extraction and analytical methods, the prediction of PFAS distribution in soils, and current PFAS remediation strategies. Four predominant PFAA forms have been proposed in soils: (i) aqueous-extracted PFAAs, (ii) organic-solvent extracted PFAAs, (iii) embedded or sequestered PFAAs, and (iv) covalently bound PFAAs. Furthermore, it suggests suitable extraction methods and predictive models for different PFAA forms, which are instrumental in the research on PFAA speciation and prediction in soils. Simultaneously, it was proposed that elemental cycling and microbial activity may affect the speciation of PFAS. Additionally, the categorization of PFAA forms facilitated the analysis of pollution remediation. Understanding the interplay between PFAA speciation, element cycling, and bacterial activity during soil remediation is essential for understanding remediation mechanisms and assessing the long-term stability of remediation methods. Future studies should expand the investigation of varying PFAA forms in different media, consider the potential binding forms of PFAAs to minerals, organic matter, and microbes, and evaluate the possible mechanisms of PFAA speciation variation.
期刊介绍:
Eco-Environment & Health (EEH) is an international and multidisciplinary peer-reviewed journal designed for publications on the frontiers of the ecology, environment and health as well as their related disciplines. EEH focuses on the concept of “One Health” to promote green and sustainable development, dealing with the interactions among ecology, environment and health, and the underlying mechanisms and interventions. Our mission is to be one of the most important flagship journals in the field of environmental health.
Scopes
EEH covers a variety of research areas, including but not limited to ecology and biodiversity conservation, environmental behaviors and bioprocesses of emerging contaminants, human exposure and health effects, and evaluation, management and regulation of environmental risks. The key topics of EEH include:
1) Ecology and Biodiversity Conservation
Biodiversity
Ecological restoration
Ecological safety
Protected area
2) Environmental and Biological Fate of Emerging Contaminants
Environmental behaviors
Environmental processes
Environmental microbiology
3) Human Exposure and Health Effects
Environmental toxicology
Environmental epidemiology
Environmental health risk
Food safety
4) Evaluation, Management and Regulation of Environmental Risks
Chemical safety
Environmental policy
Health policy
Health economics
Environmental remediation