{"title":"DyUnS: Dynamic and uncertainty-aware task scheduling for multiprocessor embedded systems","authors":"Athena Abdi , Armin Salimi-badr","doi":"10.1016/j.suscom.2024.101009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, an uncertainty-aware task scheduling approach capable of dynamically applying on multiprocessor embedded systems called ”DyUnS” is presented. This method is based on a type-2 fuzzy inference system to consider all design challenges of multiprocessor embedded systems along with their unavoidable uncertainty caused by the differences in models and measurements. The proposed method employs a fuzzy inference system to approximate the appropriate assignment of the application’s tasks to processing cores based on a defined rank including the main design challenges of the system including execution time, temperature, power consumption, and reliability. Moreover, an uncertainty level is defined for various design challenges as the footprint of uncertainty during the scheduling process to tackle the existing inaccuracy between the static models and dynamic environment. Thus, the generated uncertainty-aware solution could be efficiently employed as a dynamic scheduling at runtime. To demonstrate the effectiveness of DyUnS in tolerating uncertainty, several experiments on various application graphs are performed and its effectually is compared to related studies. Based on these experiments, DyUnS jointly optimizes the main design parameters, and its generated solution could be employed dynamically without violating the system’s thresholds. Moreover, its average difference compared to Monte Carlo uncertainty analysis is about 0.2 for all design parameters in three levels of uncertainty.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"43 ","pages":"Article 101009"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000544","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an uncertainty-aware task scheduling approach capable of dynamically applying on multiprocessor embedded systems called ”DyUnS” is presented. This method is based on a type-2 fuzzy inference system to consider all design challenges of multiprocessor embedded systems along with their unavoidable uncertainty caused by the differences in models and measurements. The proposed method employs a fuzzy inference system to approximate the appropriate assignment of the application’s tasks to processing cores based on a defined rank including the main design challenges of the system including execution time, temperature, power consumption, and reliability. Moreover, an uncertainty level is defined for various design challenges as the footprint of uncertainty during the scheduling process to tackle the existing inaccuracy between the static models and dynamic environment. Thus, the generated uncertainty-aware solution could be efficiently employed as a dynamic scheduling at runtime. To demonstrate the effectiveness of DyUnS in tolerating uncertainty, several experiments on various application graphs are performed and its effectually is compared to related studies. Based on these experiments, DyUnS jointly optimizes the main design parameters, and its generated solution could be employed dynamically without violating the system’s thresholds. Moreover, its average difference compared to Monte Carlo uncertainty analysis is about 0.2 for all design parameters in three levels of uncertainty.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.