Advancing Solar Energetic Particle Event Prediction through Survival Analysis and Cloud Computing. I. Kaplan–Meier Estimation and Cox Proportional Hazards Modeling
{"title":"Advancing Solar Energetic Particle Event Prediction through Survival Analysis and Cloud Computing. I. Kaplan–Meier Estimation and Cox Proportional Hazards Modeling","authors":"India Jackson, Petrus Martens","doi":"10.3847/1538-4365/ad3fba","DOIUrl":null,"url":null,"abstract":"Solar energetic particles (SEPs) pose significant challenges to technology, astronaut health, and space missions. This initial paper in our two-part series undertakes a comprehensive analysis of the time to detection for SEPs, applying advanced statistical techniques and cloud-computing resources to deepen our understanding of SEP event probabilities over time. We employ a range of models encompassing nonparametric, semiparametric, and parametric approaches, such as the Kaplan–Meier estimator and Cox Proportional Hazards models. These are complemented by various distribution models—including exponential, Weibull, lognormal, and log-logistic distributions—to effectively tackle the challenges associated with “censored data,” a common issue in survival analysis. Employing Amazon Web Services and Python’s “lifelines” and “scikit-survival” libraries, we efficiently preprocess and analyze large data sets. This methodical approach not only enhances our current analysis, but also sets a robust statistical foundation for the development of predictive models, which will be the focus of the subsequent paper. In identifying the key determinants that affect the timing of SEP detection, we establish the vital features that will inform the machine-learning (ML) techniques explored in the second paper. There, we will utilize advanced ML models—such as survival trees and random survival forests—to evolve SEP event prediction capabilities. This research is committed to advancing space weather, strengthening the safety of space-borne technology, and safeguarding astronaut health.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":"37 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad3fba","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Solar energetic particles (SEPs) pose significant challenges to technology, astronaut health, and space missions. This initial paper in our two-part series undertakes a comprehensive analysis of the time to detection for SEPs, applying advanced statistical techniques and cloud-computing resources to deepen our understanding of SEP event probabilities over time. We employ a range of models encompassing nonparametric, semiparametric, and parametric approaches, such as the Kaplan–Meier estimator and Cox Proportional Hazards models. These are complemented by various distribution models—including exponential, Weibull, lognormal, and log-logistic distributions—to effectively tackle the challenges associated with “censored data,” a common issue in survival analysis. Employing Amazon Web Services and Python’s “lifelines” and “scikit-survival” libraries, we efficiently preprocess and analyze large data sets. This methodical approach not only enhances our current analysis, but also sets a robust statistical foundation for the development of predictive models, which will be the focus of the subsequent paper. In identifying the key determinants that affect the timing of SEP detection, we establish the vital features that will inform the machine-learning (ML) techniques explored in the second paper. There, we will utilize advanced ML models—such as survival trees and random survival forests—to evolve SEP event prediction capabilities. This research is committed to advancing space weather, strengthening the safety of space-borne technology, and safeguarding astronaut health.