Deep-learning-based acceleration of critical point calculations

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-06-14 DOI:10.1016/j.ces.2024.120371
Vishnu Jayaprakash, Huazhou Li
{"title":"Deep-learning-based acceleration of critical point calculations","authors":"Vishnu Jayaprakash,&nbsp;Huazhou Li","doi":"10.1016/j.ces.2024.120371","DOIUrl":null,"url":null,"abstract":"<div><p>Computation of the critical point of complex fluid mixtures is an important part of understanding their thermodynamic phase behaviour. While algorithms for these calculations are well established, they are often slow when the number of constituting components is large. In this work, we propose a new procedure to significantly accelerate critical point calculations by leveraging deep neural network (DNN) models. A DNN model for critical point predictions of a given mixture is first trained based on the critical points of such a mixture with various compositions. The predictions of the DNN model are then used to initialize both of the commonly used algorithms for mixture critical point calculations: root finding and global minimization. We demonstrate that when using the DNN-based predictions to initialize the root-finding-based and optimization-based algorithms, we can achieve 50-90% and 80-90% reductions in the number of required iterations, respectively.</p></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009250924006717/pdfft?md5=ae64546b84ca23c68621fd530a3323a2&pid=1-s2.0-S0009250924006717-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924006717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Computation of the critical point of complex fluid mixtures is an important part of understanding their thermodynamic phase behaviour. While algorithms for these calculations are well established, they are often slow when the number of constituting components is large. In this work, we propose a new procedure to significantly accelerate critical point calculations by leveraging deep neural network (DNN) models. A DNN model for critical point predictions of a given mixture is first trained based on the critical points of such a mixture with various compositions. The predictions of the DNN model are then used to initialize both of the commonly used algorithms for mixture critical point calculations: root finding and global minimization. We demonstrate that when using the DNN-based predictions to initialize the root-finding-based and optimization-based algorithms, we can achieve 50-90% and 80-90% reductions in the number of required iterations, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的临界点加速计算
计算复杂混合物的临界点是了解其热力学相行为的重要部分。虽然这些计算的算法已经成熟,但当组成成分数量较多时,它们的计算速度往往较慢。在这项工作中,我们提出了一种新的程序,利用深度神经网络(DNN)模型显著加快临界点计算速度。首先,根据具有不同成分的混合物的临界点,训练用于预测给定混合物临界点的 DNN 模型。然后,利用 DNN 模型的预测结果来初始化两种常用的混合物临界点计算算法:根查找和全局最小化。我们证明,当使用基于 DNN 的预测来初始化基于寻根的算法和基于优化的算法时,所需的迭代次数可分别减少 50-90% 和 80-90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Theoretical insights into the size effect of α-Fe2O3 oxygen carrier on chemical looping reforming of methane Experimental study of the collision behavior between moving and sessile droplets on curved surfaces Heat transfer of symmetric impacts of two droplets on a hot liquid film Exploring gallium nitride nanosheets capability as a high-salt rejection membrane material: A molecular dynamics study Optimization of catalyst service cycle and start-up considering the reactor-distillation-HEN integration and climate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1