Seyed Amir Saeedi-Sini, S. Sina, M. Sadeghi, Ebrahim Farajzadeh
{"title":"Development and characterization of a Fricke gel dosimeter for precise measurement in low-dose photon fields","authors":"Seyed Amir Saeedi-Sini, S. Sina, M. Sadeghi, Ebrahim Farajzadeh","doi":"10.1088/1748-0221/19/06/P06019","DOIUrl":null,"url":null,"abstract":"In the field of radiation medicine, particularly within radiotherapy applications, radiochromic chemical dosimeters are indispensable tools for dose measurement. This study focuses on the novel development of a radiochromic dosimeter tailored for the precise detection of low-dose radiation, aiming to construct a dosimeter with tissue-equivalent properties suitable for accurately measuring low to medium radiation doses. Utilizing ferrous xylenol orange gel (FXG), we developed two tissue-equivalent dosimeter formulations based on gelatin and polyvinyl alcohol (PVA). Our findings demonstrate that the gelatin-based FXG dosimeter exhibits a robust linear dose-response relationship, facilitating precise dose measurements in the range of 50 to 5000 mGy. Conversely, the PVA-based FXG dosimeter proved effective for dose measurements within a narrower range of 600 to 5000 mGy. Notably, the gelatin-based dosimeter's performance underscores its potential as a versatile tool in radiation detection, promising significant benefits for both medical and industrial applications. This research confirms the efficacy of the Fricke dosimeter gel, demonstrating its linear response across a dose range of 0.05 to 5 Gy, thus establishing a foundation for further advancements in accurate and reliable low-dose radiation monitoring.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-0221/19/06/P06019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the field of radiation medicine, particularly within radiotherapy applications, radiochromic chemical dosimeters are indispensable tools for dose measurement. This study focuses on the novel development of a radiochromic dosimeter tailored for the precise detection of low-dose radiation, aiming to construct a dosimeter with tissue-equivalent properties suitable for accurately measuring low to medium radiation doses. Utilizing ferrous xylenol orange gel (FXG), we developed two tissue-equivalent dosimeter formulations based on gelatin and polyvinyl alcohol (PVA). Our findings demonstrate that the gelatin-based FXG dosimeter exhibits a robust linear dose-response relationship, facilitating precise dose measurements in the range of 50 to 5000 mGy. Conversely, the PVA-based FXG dosimeter proved effective for dose measurements within a narrower range of 600 to 5000 mGy. Notably, the gelatin-based dosimeter's performance underscores its potential as a versatile tool in radiation detection, promising significant benefits for both medical and industrial applications. This research confirms the efficacy of the Fricke dosimeter gel, demonstrating its linear response across a dose range of 0.05 to 5 Gy, thus establishing a foundation for further advancements in accurate and reliable low-dose radiation monitoring.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.