Exciton–Phonon Coupling Induces a New Pathway for Ultrafast Intralayer-to-Interlayer Exciton Transition and Interlayer Charge Transfer in WS2–MoS2 Heterostructure: A First-Principles Study

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-06-18 DOI:10.1021/acs.nanolett.4c01508
Yang-hao Chan*, Mit H. Naik, Jonah B. Haber, Jeffrey B. Neaton, Steven G. Louie, Diana Y. Qiu* and Felipe H. da Jornada*, 
{"title":"Exciton–Phonon Coupling Induces a New Pathway for Ultrafast Intralayer-to-Interlayer Exciton Transition and Interlayer Charge Transfer in WS2–MoS2 Heterostructure: A First-Principles Study","authors":"Yang-hao Chan*,&nbsp;Mit H. Naik,&nbsp;Jonah B. Haber,&nbsp;Jeffrey B. Neaton,&nbsp;Steven G. Louie,&nbsp;Diana Y. Qiu* and Felipe H. da Jornada*,&nbsp;","doi":"10.1021/acs.nanolett.4c01508","DOIUrl":null,"url":null,"abstract":"<p >Despite the weak, van der Waals interlayer coupling, photoinduced charge transfer vertically across atomically thin interfaces can occur within surprisingly fast, sub-50 fs time scales. An early theoretical understanding of charge transfer is based on a noninteracting picture, neglecting excitonic effects that dominate optical properties of such materials. We employ an <i>ab initio</i> many-body perturbation theory approach, which explicitly accounts for the excitons and phonons in the heterostructure. Our large-scale first-principles calculations directly probe the role of exciton–phonon coupling in the charge dynamics of the WS<sub>2</sub>/MoS<sub>2</sub> heterobilayer. We find that the exciton–phonon interaction induced relaxation time of photoexcited excitons at the <i>K</i> valley of MoS<sub>2</sub> and WS<sub>2</sub> is 67 and 15 fs at 300 K, respectively, which sets a lower bound to the intralayer-to-interlayer exciton transfer time and is consistent with experiment reports. We further show that electron–hole correlations facilitate novel transfer pathways that are otherwise inaccessible to noninteracting electrons and holes.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c01508","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01508","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the weak, van der Waals interlayer coupling, photoinduced charge transfer vertically across atomically thin interfaces can occur within surprisingly fast, sub-50 fs time scales. An early theoretical understanding of charge transfer is based on a noninteracting picture, neglecting excitonic effects that dominate optical properties of such materials. We employ an ab initio many-body perturbation theory approach, which explicitly accounts for the excitons and phonons in the heterostructure. Our large-scale first-principles calculations directly probe the role of exciton–phonon coupling in the charge dynamics of the WS2/MoS2 heterobilayer. We find that the exciton–phonon interaction induced relaxation time of photoexcited excitons at the K valley of MoS2 and WS2 is 67 and 15 fs at 300 K, respectively, which sets a lower bound to the intralayer-to-interlayer exciton transfer time and is consistent with experiment reports. We further show that electron–hole correlations facilitate novel transfer pathways that are otherwise inaccessible to noninteracting electrons and holes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 WS2-MoS2 异质结构中,激子-暾欲子耦合诱导了层内到层内激子超快转变和层间电荷转移的新途径:第一原理研究。
尽管范德瓦耳斯层间耦合很弱,但光诱导电荷垂直穿过原子薄界面的传输速度却快得惊人,可达 50 fs 以下。对电荷转移的早期理论理解是基于非相互作用的图景,忽略了主导此类材料光学特性的激子效应。我们采用了一种 ab initio 多体扰动理论方法,该方法明确考虑了异质结构中的激子和声子。我们的大规模第一性原理计算直接探究了激子-声子耦合在 WS2/MoS2 异质层电荷动力学中的作用。我们发现,在 300 K 时,MoS2 和 WS2 K 谷光激发激子的弛豫时间分别为 67 fs 和 15 fs,这为层内到层间的激子转移时间设定了下限,并与实验报告一致。我们进一步证明,电子-空穴关联促进了新的转移途径,否则非相互作用的电子和空穴是无法进入这些途径的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Correction to "Injectable Fluorescent Neural Interfaces for Cell-Specific Stimulating and Imaging". Diverse Chiral Nanotubes Assembled from Identical DNA Strands. Inferior Interfacial Superconductivity in 1 UC FeSe/SrVO3/SrTiO3 with Screened Interfacial Electron-Phonon Coupling. Spatially Dependent in-Gap States Induced by Andreev Tunneling through a Single Electronic State. Tunable Multistate Ferroelectricity of Unit-Cell-Thick BaTiO3 Revived by a Ferroelectric SnS Monolayer via Interfacial Sliding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1