Amanda Konet, Ian Thomas, Gerald Gartlehner, Leila Kahwati, Rainer Hilscher, Shannon Kugley, Karen Crotty, Meera Viswanathan, Robert Chew
{"title":"Performance of two large language models for data extraction in evidence synthesis","authors":"Amanda Konet, Ian Thomas, Gerald Gartlehner, Leila Kahwati, Rainer Hilscher, Shannon Kugley, Karen Crotty, Meera Viswanathan, Robert Chew","doi":"10.1002/jrsm.1732","DOIUrl":null,"url":null,"abstract":"<p>Accurate data extraction is a key component of evidence synthesis and critical to valid results. The advent of publicly available large language models (LLMs) has generated interest in these tools for evidence synthesis and created uncertainty about the choice of LLM. We compare the performance of two widely available LLMs (Claude 2 and GPT-4) for extracting pre-specified data elements from 10 published articles included in a previously completed systematic review. We use prompts and full study PDFs to compare the outputs from the browser versions of Claude 2 and GPT-4. GPT-4 required use of a third-party plugin to upload and parse PDFs. Accuracy was high for Claude 2 (96.3%). The accuracy of GPT-4 with the plug-in was lower (68.8%); however, most of the errors were due to the plug-in. Both LLMs correctly recognized when prespecified data elements were missing from the source PDF and generated correct information for data elements that were not reported explicitly in the articles. A secondary analysis demonstrated that, when provided selected text from the PDFs, Claude 2 and GPT-4 accurately extracted 98.7% and 100% of the data elements, respectively. Limitations include the narrow scope of the study PDFs used, that prompt development was completed using only Claude 2, and that we cannot guarantee the open-source articles were not used to train the LLMs. This study highlights the potential for LLMs to revolutionize data extraction but underscores the importance of accurate PDF parsing. For now, it remains essential for a human investigator to validate LLM extractions.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 5","pages":"818-824"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1732","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate data extraction is a key component of evidence synthesis and critical to valid results. The advent of publicly available large language models (LLMs) has generated interest in these tools for evidence synthesis and created uncertainty about the choice of LLM. We compare the performance of two widely available LLMs (Claude 2 and GPT-4) for extracting pre-specified data elements from 10 published articles included in a previously completed systematic review. We use prompts and full study PDFs to compare the outputs from the browser versions of Claude 2 and GPT-4. GPT-4 required use of a third-party plugin to upload and parse PDFs. Accuracy was high for Claude 2 (96.3%). The accuracy of GPT-4 with the plug-in was lower (68.8%); however, most of the errors were due to the plug-in. Both LLMs correctly recognized when prespecified data elements were missing from the source PDF and generated correct information for data elements that were not reported explicitly in the articles. A secondary analysis demonstrated that, when provided selected text from the PDFs, Claude 2 and GPT-4 accurately extracted 98.7% and 100% of the data elements, respectively. Limitations include the narrow scope of the study PDFs used, that prompt development was completed using only Claude 2, and that we cannot guarantee the open-source articles were not used to train the LLMs. This study highlights the potential for LLMs to revolutionize data extraction but underscores the importance of accurate PDF parsing. For now, it remains essential for a human investigator to validate LLM extractions.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.