Reduced levels of MRE11 cause disease phenotypes distinct from ataxia telangiectasia-like disorder.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2024-09-03 DOI:10.1093/hmg/ddae101
Andrea J Hartlerode, Ahmed M Mostafa, Steven K Orban, Rachel Benedeck, Koral Campbell, Mark J Hoenerhoff, David O Ferguson, JoAnn M Sekiguchi
{"title":"Reduced levels of MRE11 cause disease phenotypes distinct from ataxia telangiectasia-like disorder.","authors":"Andrea J Hartlerode, Ahmed M Mostafa, Steven K Orban, Rachel Benedeck, Koral Campbell, Mark J Hoenerhoff, David O Ferguson, JoAnn M Sekiguchi","doi":"10.1093/hmg/ddae101","DOIUrl":null,"url":null,"abstract":"<p><p>The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1605-1617"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373340/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae101","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The MRE11/RAD50/NBS1 (MRN) complex plays critical roles in cellular responses to DNA double-strand breaks. MRN is involved in end binding and processing, and it also induces cell cycle checkpoints by activating the ataxia-telangiectasia mutated (ATM) protein kinase. Hypomorphic pathogenic variants in the MRE11, RAD50, or NBS1 genes cause autosomal recessive genome instability syndromes featuring variable degrees of dwarfism, neurological defects, anemia, and cancer predisposition. Disease-associated MRN alleles include missense and nonsense variants, and many cause reduced protein levels of the entire MRN complex. However, the dramatic variability in the disease manifestation of MRN pathogenic variants is not understood. We sought to determine if low protein levels are a significant contributor to disease sequelae and therefore generated a transgenic murine model expressing MRE11 at low levels. These mice display dramatic phenotypes including small body size, severe anemia, and impaired DNA repair. We demonstrate that, distinct from ataxia telangiectasia-like disorder caused by MRE11 pathogenic missense or nonsense variants, mice and cultured cells expressing low MRE11 levels do not display the anticipated defects in ATM activation. Our findings indicate that ATM signaling can be supported by very low levels of the MRN complex and imply that defective ATM activation results from perturbation of MRN function caused by specific hypomorphic disease mutations. These distinct phenotypic outcomes underline the importance of understanding the impact of specific pathogenic MRE11 variants, which may help direct appropriate early surveillance for patients with these complicated disorders in a clinical setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRE11 水平降低导致的疾病表型与共济失调毛细血管扩张症样障碍不同。
MRE11/RAD50/NBS1(MRN)复合物在细胞对 DNA 双链断裂的反应中发挥着关键作用。MRN参与末端结合和处理,它还通过激活共济失调-特朗吉赛突变(ATM)蛋白激酶诱导细胞周期检查点。MRE11、RAD50 或 NBS1 基因中的低形变致病变体会导致常染色体隐性基因组不稳定综合征,具有不同程度的侏儒症、神经系统缺陷、贫血和癌症易感性。与疾病相关的 MRN 等位基因包括错义变异和无义变异,其中许多会导致整个 MRN 复合物的蛋白质水平降低。然而,人们并不了解MRN致病变体在疾病表现方面的巨大差异。我们试图确定低蛋白水平是否是导致疾病后遗症的重要因素,因此产生了一种低水平表达 MRE11 的转基因小鼠模型。这些小鼠表现出显著的表型,包括体型小、严重贫血和 DNA 修复受损。我们证明,与由 MRE11 致病性错义或无义变体引起的共济失调毛细血管扩张症样疾病不同,表达低水平 MRE11 的小鼠和培养细胞并不表现出预期的 ATM 激活缺陷。我们的研究结果表明,ATM 信号传导可由极低水平的 MRN 复合物支持,并意味着 ATM 激活缺陷是由特定低形态疾病突变导致的 MRN 功能紊乱造成的。这些不同的表型结果凸显了了解特定致病性 MRE11 变异的影响的重要性,这可能有助于在临床环境中指导对这些复杂疾病患者进行适当的早期监控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
Dissecting the shared genetic architecture between nonalcoholic fatty liver disease and type 2 diabetes. Integrated multi-omics analysis revealed the molecular networks and potential targets of cellular senescence in Alzheimer's disease. Motor pool selectivity of neuromuscular degeneration in type I spinal muscular atrophy is conserved between human and mouse. Use of patient-derived cell models for characterization of compound heterozygous hypomorphic C2CD3 variants in a patient with isolated nephronophthisis. Identification of ZNF850 as a novel CTG repeat expansion-related gene in myotonic dystrophy type 1 patient-derived iPSCs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1