{"title":"SAGCN: Using graph convolutional network with subgraph-aware for circRNA-drug sensitivity identification.","authors":"Weicheng Sun, Chengjuan Ren, Jinsheng Xu, Ping Zhang","doi":"10.1109/TCBB.2024.3415058","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) play a significant role in cancer development and therapy resistance. There is substantial evidence indicating that the expression of circRNAs affects the sensitivity of cells to drugs. Identifying circRNAs-drug sensitivity association (CDA) is helpful for disease treatment and drug discovery. However, the identification of CDA through conventional biological experiments is both time-consuming and costly. Therefore, it is urgent to develop computational methods to predict CDA. In this study, we propose a new computational method, the subgraph-aware graph convolutional network (SAGCN), for predicting CDA. SAGCN first construct a heterogeneous network composed of circRNA similarity network, drug similarity network, and circRNA-drug bipartite network. Then, a subgraph extractor is proposed to learn the latent subgraph structure of the heterogeneous network using a graph convolutional network. The extractor can capture 1-hop and 2-hop information and then a fusing attention mechanism is designed to integrate them adaptively. Simultaneously, a novel subgraph-aware attention mechanism is proposed to detect intrinsic subgraph structure. The final node feature representation is obtained to make the CDA prediction. Experimental results demonstrate that SAGCN obtained an average AUC of 0.9120 and AUPR of 0.8693, exceeding the performance of the most advanced models under 10-fold cross-validation. Case studies have demonstrated the potential of SAGCN in identifying associations between circRNA and drug sensitivity.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TCBB.2024.3415058","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) play a significant role in cancer development and therapy resistance. There is substantial evidence indicating that the expression of circRNAs affects the sensitivity of cells to drugs. Identifying circRNAs-drug sensitivity association (CDA) is helpful for disease treatment and drug discovery. However, the identification of CDA through conventional biological experiments is both time-consuming and costly. Therefore, it is urgent to develop computational methods to predict CDA. In this study, we propose a new computational method, the subgraph-aware graph convolutional network (SAGCN), for predicting CDA. SAGCN first construct a heterogeneous network composed of circRNA similarity network, drug similarity network, and circRNA-drug bipartite network. Then, a subgraph extractor is proposed to learn the latent subgraph structure of the heterogeneous network using a graph convolutional network. The extractor can capture 1-hop and 2-hop information and then a fusing attention mechanism is designed to integrate them adaptively. Simultaneously, a novel subgraph-aware attention mechanism is proposed to detect intrinsic subgraph structure. The final node feature representation is obtained to make the CDA prediction. Experimental results demonstrate that SAGCN obtained an average AUC of 0.9120 and AUPR of 0.8693, exceeding the performance of the most advanced models under 10-fold cross-validation. Case studies have demonstrated the potential of SAGCN in identifying associations between circRNA and drug sensitivity.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system