Chien-Kuang C Ding, Zhuo Tony Su, Erik Erak, Lia De Paula Oliveira, Daniela C Salles, Yuezhou Jing, Pranab Samanta, Saikiran Bonthu, Uttara Joshi, Chaith Kondragunta, Nitin Singhal, Angelo M De Marzo, Bruce J Trock, Christian P Pavlovich, Claire M de la Calle, Tamara L Lotan
{"title":"Predicting prostate cancer grade reclassification on active surveillance using a deep learning-based grading algorithm.","authors":"Chien-Kuang C Ding, Zhuo Tony Su, Erik Erak, Lia De Paula Oliveira, Daniela C Salles, Yuezhou Jing, Pranab Samanta, Saikiran Bonthu, Uttara Joshi, Chaith Kondragunta, Nitin Singhal, Angelo M De Marzo, Bruce J Trock, Christian P Pavlovich, Claire M de la Calle, Tamara L Lotan","doi":"10.1093/jnci/djae139","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL)-based algorithms to determine prostate cancer (PCa) Grade Group (GG) on biopsy slides have not been validated by comparison to clinical outcomes. We used a DL-based algorithm, AIRAProstate, to regrade initial prostate biopsies in 2 independent PCa active surveillance (AS) cohorts. In a cohort initially diagnosed with GG1 PCa using only systematic biopsies (n = 138), upgrading of the initial biopsy to ≥GG2 by AIRAProstate was associated with rapid or extreme grade reclassification on AS (odds ratio = 3.3, P = .04), whereas upgrading of the initial biopsy by contemporary uropathologist reviews was not associated with this outcome. In a contemporary validation cohort that underwent prostate magnetic resonance imaging before initial biopsy (n = 169), upgrading of the initial biopsy (all contemporary GG1 by uropathologist grading) by AIRAProstate was associated with grade reclassification on AS (hazard ratio = 1.7, P = .03). These results demonstrate the utility of a DL-based grading algorithm in PCa risk stratification for AS.</p>","PeriodicalId":14809,"journal":{"name":"JNCI Journal of the National Cancer Institute","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Journal of the National Cancer Institute","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnci/djae139","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL)-based algorithms to determine prostate cancer (PCa) Grade Group (GG) on biopsy slides have not been validated by comparison to clinical outcomes. We used a DL-based algorithm, AIRAProstate, to regrade initial prostate biopsies in 2 independent PCa active surveillance (AS) cohorts. In a cohort initially diagnosed with GG1 PCa using only systematic biopsies (n = 138), upgrading of the initial biopsy to ≥GG2 by AIRAProstate was associated with rapid or extreme grade reclassification on AS (odds ratio = 3.3, P = .04), whereas upgrading of the initial biopsy by contemporary uropathologist reviews was not associated with this outcome. In a contemporary validation cohort that underwent prostate magnetic resonance imaging before initial biopsy (n = 169), upgrading of the initial biopsy (all contemporary GG1 by uropathologist grading) by AIRAProstate was associated with grade reclassification on AS (hazard ratio = 1.7, P = .03). These results demonstrate the utility of a DL-based grading algorithm in PCa risk stratification for AS.
期刊介绍:
The Journal of the National Cancer Institute is a reputable publication that undergoes a peer-review process. It is available in both print (ISSN: 0027-8874) and online (ISSN: 1460-2105) formats, with 12 issues released annually. The journal's primary aim is to disseminate innovative and important discoveries in the field of cancer research, with specific emphasis on clinical, epidemiologic, behavioral, and health outcomes studies. Authors are encouraged to submit reviews, minireviews, and commentaries. The journal ensures that submitted manuscripts undergo a rigorous and expedited review to publish scientifically and medically significant findings in a timely manner.