Educational activity of enzyme kinetics in an undergraduate biochemistry course: invertase enzyme as a model.

IF 1.6 Q2 EDUCATION, SCIENTIFIC DISCIPLINES Journal of Microbiology & Biology Education Pub Date : 2024-08-29 Epub Date: 2024-06-18 DOI:10.1128/jmbe.00050-24
Ibrahim Al-Odat
{"title":"Educational activity of enzyme kinetics in an undergraduate biochemistry course: invertase enzyme as a model.","authors":"Ibrahim Al-Odat","doi":"10.1128/jmbe.00050-24","DOIUrl":null,"url":null,"abstract":"<p><p>This article aims to simplify and facilitate the process of practical teaching of enzyme kinetics by utilizing minimal teaching laboratory requirements. Simultaneously, it ensures that students comprehend the enzyme kinetics experiment effectively. The focus is on teaching students how to estimate the maximum velocity (Vmax) and Michaelis constant (Km) of β-fructofuranosidase enzyme (also known as invertase) isolated from dry yeast. The invertase enzyme catalyzes the hydrolysis of sucrose substrate into glucose and fructose, employing the Michaelis-Menten approach of evaluating invertase enzyme kinetics as well as Lineweaver-Burk linear graphic approach of evaluating the Michaelis-Menten enzyme kinetics. The practical experiment seeks to reinforce the concepts of initial velocity dependence on substrate concentration. The data presented in the work were generated from a genuine practical biochemistry course enrolled by second-year undergraduate students in the Department of Pharmacy and the Department of Medical Laboratory Science. While there were minor variations in the invertase enzyme kinetic parameters among students, they successfully carried out the experiment. The students accurately estimated the Vmax and Km of the invertase enzyme in the sucrose hydrolysis chemical reaction. Moreover, they demonstrated an understanding of the meanings of the kinetic parameters (Km and Vmax) and the utility of the Lineweaver-Burk plot.</p>","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":" ","pages":"e0005024"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360556/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00050-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to simplify and facilitate the process of practical teaching of enzyme kinetics by utilizing minimal teaching laboratory requirements. Simultaneously, it ensures that students comprehend the enzyme kinetics experiment effectively. The focus is on teaching students how to estimate the maximum velocity (Vmax) and Michaelis constant (Km) of β-fructofuranosidase enzyme (also known as invertase) isolated from dry yeast. The invertase enzyme catalyzes the hydrolysis of sucrose substrate into glucose and fructose, employing the Michaelis-Menten approach of evaluating invertase enzyme kinetics as well as Lineweaver-Burk linear graphic approach of evaluating the Michaelis-Menten enzyme kinetics. The practical experiment seeks to reinforce the concepts of initial velocity dependence on substrate concentration. The data presented in the work were generated from a genuine practical biochemistry course enrolled by second-year undergraduate students in the Department of Pharmacy and the Department of Medical Laboratory Science. While there were minor variations in the invertase enzyme kinetic parameters among students, they successfully carried out the experiment. The students accurately estimated the Vmax and Km of the invertase enzyme in the sucrose hydrolysis chemical reaction. Moreover, they demonstrated an understanding of the meanings of the kinetic parameters (Km and Vmax) and the utility of the Lineweaver-Burk plot.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酶动力学在生物化学本科课程中的教育活动:以转化酶为模型。
本文旨在利用最少的教学实验要求,简化和促进酶动力学实践教学过程。同时,确保学生有效地理解酶动力学实验。重点是指导学生如何估算从干酵母中分离出来的β-呋喃果糖酶(又称转化酶)的最大速度(Vmax)和迈克尔斯常数(Km)。转化酶催化蔗糖底物水解为葡萄糖和果糖,采用 Michaelis-Menten 法评估转化酶酶动力学,以及 Lineweaver-Burk 线性图形法评估 Michaelis-Menten 酶动力学。实际实验旨在强化初始速度与底物浓度相关性的概念。作品中展示的数据来自药学系和医学检验系二年级本科生选修的一门真正实用的生物化学课程。虽然学生们的转化酶动力学参数略有不同,但他们都成功地完成了实验。学生们准确地估计了转化酶在蔗糖水解化学反应中的 Vmax 和 Km。此外,他们还展示了对动力学参数(Km 和 Vmax)含义和 Lineweaver-Burk 图的实用性的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microbiology & Biology Education
Journal of Microbiology & Biology Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
3.00
自引率
26.30%
发文量
95
审稿时长
22 weeks
期刊最新文献
Applying Beer's Law in the undergraduate cell biology laboratory: examining the mathematical relationship between optical density, cell concentration, and cell size using budding yeast. Development of a simple, low-cost, blue light-emitting diode illuminator for hands-on training of DNA detection experiments using agarose gel electrophoresis. Student reflections on emotional engagement reveal science fatigue during the COVID-19 online learning transition. Visualization of giant Mimivirus in a movie for biology classrooms. Training undergraduate biomedical science majors in peer review and constructive criticism through a senior capstone course.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1