Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models.

IF 4 1区 生物学 Q1 ZOOLOGY Zoological Research Pub Date : 2024-07-18 DOI:10.24272/j.issn.2095-8137.2024.062
Hong-Yi Zheng, Tian-Zhang Song, Yong-Tang Zheng
{"title":"Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models.","authors":"Hong-Yi Zheng, Tian-Zhang Song, Yong-Tang Zheng","doi":"10.24272/j.issn.2095-8137.2024.062","DOIUrl":null,"url":null,"abstract":"<p><p>The distribution of the immune system throughout the body complicates <i>in vitro</i> assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"747-766"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298684/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2024.062","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 的免疫生物学:来自动物模型的机制和治疗见解。
免疫系统在全身的分布使 2019 年冠状病毒病(COVID-19)免疫生物学的体外评估变得复杂,当推断到整个机体时往往缺乏可重复性。因此,要全面了解严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)感染的病理学和免疫学,开发动物模型势在必行。本综述总结了 COVID-19 动物模型(包括非人灵长类动物 (NHPs)、小鼠和仓鼠)的最新进展,重点介绍它们在探索 SARS-CoV-2 感染的免疫病理机制、免疫保护和长期影响方面的作用,以及它们在 SARS-CoV-2 感染的免疫预防和免疫疗法中的应用。由于没有一种动物模型能完全概括 COVID-19 的所有方面,因此还强调了这些动物模型之间的差异及其具体应用。为了有效应对 COVID-19 带来的挑战,必须选择适当的动物模型,以准确复制不同病程和严重程度的致命和非致命感染。优化动物模型库和相关研究工具是解决全球 COVID-19 大流行的关键,也是未来新发传染病的强大资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
期刊最新文献
IDH2 and GLUD1 depletion arrests embryonic development through an H4K20me3 epigenetic barrier in porcine parthenogenetic embryos. Pancreatic agenesis and altered m6A methylation in the pancreas of PDX1-mutant cynomolgus macaques. Convergent evolution in high-altitude and marine mammals: Molecular adaptations to pulmonary fibrosis and hypoxia. Maternal sleep deprivation disrupts glutamate metabolism in offspring rats. Nature's disguise: Empirical demonstration of dead-leaf masquerade in Kallima butterflies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1