Xu Zuo, Ashok Kumar, Shuhan Shen, Jianfu Li, Grace Cong, Edward Jin, Qingxia Chen, Jeremy L Warner, Ping Yang, Hua Xu
{"title":"Extracting Systemic Anticancer Therapy and Response Information From Clinical Notes Following the RECIST Definition.","authors":"Xu Zuo, Ashok Kumar, Shuhan Shen, Jianfu Li, Grace Cong, Edward Jin, Qingxia Chen, Jeremy L Warner, Ping Yang, Hua Xu","doi":"10.1200/CCI.23.00166","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The RECIST guidelines provide a standardized approach for evaluating the response of cancer to treatment, allowing for consistent comparison of treatment efficacy across different therapies and patients. However, collecting such information from electronic health records manually can be extremely labor-intensive and time-consuming because of the complexity and volume of clinical notes. The aim of this study is to apply natural language processing (NLP) techniques to automate this process, minimizing manual data collection efforts, and improving the consistency and reliability of the results.</p><p><strong>Methods: </strong>We proposed a complex, hybrid NLP system that automates the process of extracting, linking, and summarizing anticancer therapy and associated RECIST-like responses from narrative clinical text. The system consists of multiple machine learning-/deep learning-based and rule-based modules for diverse NLP tasks such as named entity recognition, assertion classification, relation extraction, and text normalization, to address different challenges associated with anticancer therapy and response information extraction. We then evaluated the system performances on two independent test sets from different institutions to demonstrate its effectiveness and generalizability.</p><p><strong>Results: </strong>The system used domain-specific language models, BioBERT and BioClinicalBERT, for high-performance therapy mentions identification and RECIST responses extraction and categorization. The best-performing model achieved a 0.66 score in linking therapy and RECIST response mentions, with end-to-end performance peaking at 0.74 after relation normalization, indicating substantial efficacy with room for improvement.</p><p><strong>Conclusion: </strong>We developed, implemented, and tested an information extraction system from clinical notes for cancer treatment and efficacy assessment information. We expect this system will support future cancer research, particularly oncologic studies that focus on efficiently assessing the effectiveness and reliability of cancer therapeutics.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2300166"},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.23.00166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The RECIST guidelines provide a standardized approach for evaluating the response of cancer to treatment, allowing for consistent comparison of treatment efficacy across different therapies and patients. However, collecting such information from electronic health records manually can be extremely labor-intensive and time-consuming because of the complexity and volume of clinical notes. The aim of this study is to apply natural language processing (NLP) techniques to automate this process, minimizing manual data collection efforts, and improving the consistency and reliability of the results.
Methods: We proposed a complex, hybrid NLP system that automates the process of extracting, linking, and summarizing anticancer therapy and associated RECIST-like responses from narrative clinical text. The system consists of multiple machine learning-/deep learning-based and rule-based modules for diverse NLP tasks such as named entity recognition, assertion classification, relation extraction, and text normalization, to address different challenges associated with anticancer therapy and response information extraction. We then evaluated the system performances on two independent test sets from different institutions to demonstrate its effectiveness and generalizability.
Results: The system used domain-specific language models, BioBERT and BioClinicalBERT, for high-performance therapy mentions identification and RECIST responses extraction and categorization. The best-performing model achieved a 0.66 score in linking therapy and RECIST response mentions, with end-to-end performance peaking at 0.74 after relation normalization, indicating substantial efficacy with room for improvement.
Conclusion: We developed, implemented, and tested an information extraction system from clinical notes for cancer treatment and efficacy assessment information. We expect this system will support future cancer research, particularly oncologic studies that focus on efficiently assessing the effectiveness and reliability of cancer therapeutics.