Drug safety assessment by machine learning models.

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-06-18 DOI:10.1080/10543406.2024.2365976
Nan Miles Xi, Dalong Patrick Huang
{"title":"Drug safety assessment by machine learning models.","authors":"Nan Miles Xi, Dalong Patrick Huang","doi":"10.1080/10543406.2024.2365976","DOIUrl":null,"url":null,"abstract":"<p><p>The evaluation of drug-induced Torsades de pointes (TdP) risks is crucial in drug safety assessment. In this study, we discuss machine learning approaches in the prediction of drug-induced TdP risks using preclinical data. Specifically, a random forest model was trained on the dataset generated by the rabbit ventricular wedge assay. The model prediction performance was measured on 28 drugs from the Comprehensive In Vitro Proarrhythmia Assay initiative. Leave-one-drug-out cross-validation provided an unbiased estimation of model performance. Stratified bootstrap revealed the uncertainty in the asymptotic model prediction. Our study validated the utility of machine learning approaches in predicting drug-induced TdP risks from preclinical data. Our methods can be extended to other preclinical protocols and serve as a supplementary evaluation in drug safety assessment.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-12"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2365976","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The evaluation of drug-induced Torsades de pointes (TdP) risks is crucial in drug safety assessment. In this study, we discuss machine learning approaches in the prediction of drug-induced TdP risks using preclinical data. Specifically, a random forest model was trained on the dataset generated by the rabbit ventricular wedge assay. The model prediction performance was measured on 28 drugs from the Comprehensive In Vitro Proarrhythmia Assay initiative. Leave-one-drug-out cross-validation provided an unbiased estimation of model performance. Stratified bootstrap revealed the uncertainty in the asymptotic model prediction. Our study validated the utility of machine learning approaches in predicting drug-induced TdP risks from preclinical data. Our methods can be extended to other preclinical protocols and serve as a supplementary evaluation in drug safety assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用机器学习模型评估药物安全性。
评估药物诱发 Torsades de pointes(TdP)的风险在药物安全性评估中至关重要。在本研究中,我们讨论了利用临床前数据预测药物诱发 TdP 风险的机器学习方法。具体来说,我们在兔心室楔试验产生的数据集上训练了一个随机森林模型。对 "体外原发性心律失常综合测试 "计划中的 28 种药物进行了模型预测性能测定。对模型的性能进行了无偏估计。分层引导法揭示了渐近模型预测的不确定性。我们的研究验证了机器学习方法在从临床前数据预测药物诱发 TdP 风险方面的实用性。我们的方法可以推广到其他临床前方案中,作为药物安全性评估的补充评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Sequential monitoring of cancer immunotherapy trial with random delayed treatment effect. Directed Acyclic Graph Assisted Method For Estimating Average Treatment Effect. Bayesian phase II adaptive randomization by jointly modeling efficacy and toxicity as time-to-event outcomes. Interval estimation of relative risks for combined unilateral and bilateral correlated data. Sample size estimation for recurrent event data using multifrailty and multilevel survival models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1