Computer-assisted urine cytology: Faster, cheaper, better?

IF 1.2 4区 医学 Q4 CELL BIOLOGY Cytopathology Pub Date : 2024-06-18 DOI:10.1111/cyt.13412
Chiara Ciaparrone, Elisabetta Maffei, Vincenzo L'Imperio, Pasquale Pisapia, Catarina Eloy, Filippo Fraggetta, Pio Zeppa, Alessandro Caputo
{"title":"Computer-assisted urine cytology: Faster, cheaper, better?","authors":"Chiara Ciaparrone,&nbsp;Elisabetta Maffei,&nbsp;Vincenzo L'Imperio,&nbsp;Pasquale Pisapia,&nbsp;Catarina Eloy,&nbsp;Filippo Fraggetta,&nbsp;Pio Zeppa,&nbsp;Alessandro Caputo","doi":"10.1111/cyt.13412","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in computer-assisted diagnosis (CAD) have catalysed significant progress in pathology, particularly in the realm of urine cytopathology. This review synthesizes the latest developments and challenges in CAD for diagnosing urothelial carcinomas, addressing the limitations of traditional urinary cytology. Through a literature review, we identify and analyse CAD models and algorithms developed for urine cytopathology, highlighting their methodologies and performance metrics. We discuss the potential of CAD to improve diagnostic accuracy, efficiency and patient outcomes, emphasizing its role in streamlining workflow and reducing errors. Furthermore, CAD tools have shown potential in exploring pathological conditions, uncovering novel biomarkers and prognostic/predictive features previously unknown or unseen. Finally, we examine the practical issues surrounding the integration of CAD into clinical practice, including regulatory approval, validation and training for pathologists. Despite the promising results, challenges remain, necessitating further research and validation efforts. Overall, CAD presents a transformative opportunity to revolutionize diagnostic practices in urine cytopathology, paving the way for enhanced patient care and outcomes.</p>","PeriodicalId":55187,"journal":{"name":"Cytopathology","volume":"35 5","pages":"634-641"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytopathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cyt.13412","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in computer-assisted diagnosis (CAD) have catalysed significant progress in pathology, particularly in the realm of urine cytopathology. This review synthesizes the latest developments and challenges in CAD for diagnosing urothelial carcinomas, addressing the limitations of traditional urinary cytology. Through a literature review, we identify and analyse CAD models and algorithms developed for urine cytopathology, highlighting their methodologies and performance metrics. We discuss the potential of CAD to improve diagnostic accuracy, efficiency and patient outcomes, emphasizing its role in streamlining workflow and reducing errors. Furthermore, CAD tools have shown potential in exploring pathological conditions, uncovering novel biomarkers and prognostic/predictive features previously unknown or unseen. Finally, we examine the practical issues surrounding the integration of CAD into clinical practice, including regulatory approval, validation and training for pathologists. Despite the promising results, challenges remain, necessitating further research and validation efforts. Overall, CAD presents a transformative opportunity to revolutionize diagnostic practices in urine cytopathology, paving the way for enhanced patient care and outcomes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机辅助尿液细胞学检查:更快、更便宜、更好?
计算机辅助诊断(CAD)的最新进展推动了病理学的重大进步,尤其是在尿液细胞病理学领域。本文综述了计算机辅助诊断在诊断尿路上皮癌方面的最新进展和挑战,以解决传统尿液细胞学的局限性。通过文献综述,我们确定并分析了为尿液细胞病理学开发的计算机辅助诊断模型和算法,重点介绍了它们的方法和性能指标。我们讨论了 CAD 在提高诊断准确性、效率和患者预后方面的潜力,强调了它在简化工作流程和减少错误方面的作用。此外,CAD 工具在探索病理条件、发现以前未知或未见的新型生物标记物和预后/预测特征方面也显示出了潜力。最后,我们探讨了将 CAD 纳入临床实践的实际问题,包括监管审批、验证和病理学家培训。尽管取得了令人鼓舞的成果,但挑战依然存在,需要进一步的研究和验证工作。总之,CAD 为尿液细胞病理学的诊断实践带来了变革性的机遇,为改善患者护理和治疗效果铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytopathology
Cytopathology 生物-病理学
CiteScore
2.30
自引率
15.40%
发文量
107
审稿时长
6-12 weeks
期刊介绍: The aim of Cytopathology is to publish articles relating to those aspects of cytology which will increase our knowledge and understanding of the aetiology, diagnosis and management of human disease. It contains original articles and critical reviews on all aspects of clinical cytology in its broadest sense, including: gynaecological and non-gynaecological cytology; fine needle aspiration and screening strategy. Cytopathology welcomes papers and articles on: ultrastructural, histochemical and immunocytochemical studies of the cell; quantitative cytology and DNA hybridization as applied to cytological material.
期刊最新文献
Evaluation of Diagnostic Accuracy of the Paris System (TPS 2.0) in Urine Cytology Specimens: An Institutional Experience From a Large Cohort of a Tertiary Care Centre. Myoepithelial-Rich Pleomorphic Adenoma With Novel PLAG1 Inversion on Chromosome 8, and LRP1B, PBRM1 and TCF3 Mutations. Infantile Fibromatosis Colli: Cytological Diagnosis of a Rare Entity. Navigating the Diagnostic Challenges in Lymph Node Cytology: The Case of Reactive Hyperplasia. Plasmablastic Lymphoma in the Submandibular Region Diagnosed by FNAC: A Case Report and Literature Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1