Mykyta Smirnov, Frédéric Andersson, Laurent Barantin, Igor Lima Maldonado, Christophe Destrieux
{"title":"Paraffin embedding of the whole human cerebral hemisphere to assess arterial distribution territories.","authors":"Mykyta Smirnov, Frédéric Andersson, Laurent Barantin, Igor Lima Maldonado, Christophe Destrieux","doi":"10.17179/excli2023-6601","DOIUrl":null,"url":null,"abstract":"<p><p>Commonly used to decode the human brain's structural complexity, <i>ex vivo</i> dissection focuses on a given structure or region but cannot depict the whole brain organization (for example, its arterial distribution territories). Where dissection reaches its limit, the combination of tissue sectioning and 3D reconstruction may provide a volume for the assessment of structures from any view angle, following them dynamically to understand their spatial relationships. However, to produce sections, standard histological tissue processing protocols for paraffin embedding cannot be applied to a cerebral hemisphere as the latter is extensively larger than the conventional specimens. This paper presents a protocol for paraffin embedding of the whole human cerebral hemisphere and a method to reconstruct 3D volumes from serially sectioned and photographed paraffin blocks containing embedded hemispheres. Seven <i>ex vivo</i> whole human cerebral hemispheres were included, two were serially sectioned. Main cerebral arteries were injected with colored media to label arterial territories. A detailed description of every step, from tissue processing to image acquisition of cut blockfaces and volume reconstruction, is provided. Tissue processing and section cutting were reproducible, and the former provided complete and homogeneous paraffin wax impregnation. 3D visualization of the reconstructed whole human cerebral hemisphere successfully showed the distribution territories of the main cerebral arteries. In addition, we discuss the challenges we faced and overcame while developing the presented method and highlight its originality.</p>","PeriodicalId":12247,"journal":{"name":"EXCLI Journal","volume":"23 ","pages":"612-623"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180952/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EXCLI Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.17179/excli2023-6601","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Commonly used to decode the human brain's structural complexity, ex vivo dissection focuses on a given structure or region but cannot depict the whole brain organization (for example, its arterial distribution territories). Where dissection reaches its limit, the combination of tissue sectioning and 3D reconstruction may provide a volume for the assessment of structures from any view angle, following them dynamically to understand their spatial relationships. However, to produce sections, standard histological tissue processing protocols for paraffin embedding cannot be applied to a cerebral hemisphere as the latter is extensively larger than the conventional specimens. This paper presents a protocol for paraffin embedding of the whole human cerebral hemisphere and a method to reconstruct 3D volumes from serially sectioned and photographed paraffin blocks containing embedded hemispheres. Seven ex vivo whole human cerebral hemispheres were included, two were serially sectioned. Main cerebral arteries were injected with colored media to label arterial territories. A detailed description of every step, from tissue processing to image acquisition of cut blockfaces and volume reconstruction, is provided. Tissue processing and section cutting were reproducible, and the former provided complete and homogeneous paraffin wax impregnation. 3D visualization of the reconstructed whole human cerebral hemisphere successfully showed the distribution territories of the main cerebral arteries. In addition, we discuss the challenges we faced and overcame while developing the presented method and highlight its originality.
期刊介绍:
EXCLI Journal publishes original research reports, authoritative reviews and case reports of experimental and clinical sciences.
The journal is particularly keen to keep a broad view of science and technology, and therefore welcomes papers which bridge disciplines and may not suit the narrow specialism of other journals. Although the general emphasis is on biological sciences, studies from the following fields are explicitly encouraged (alphabetical order):
aging research, behavioral sciences, biochemistry, cell biology, chemistry including analytical chemistry, clinical and preclinical studies, drug development, environmental health, ergonomics, forensic medicine, genetics, hepatology and gastroenterology, immunology, neurosciences, occupational medicine, oncology and cancer research, pharmacology, proteomics, psychiatric research, psychology, systems biology, toxicology