Summary Statistic Privacy in Data Sharing

Zinan Lin;Shuaiqi Wang;Vyas Sekar;Giulia Fanti
{"title":"Summary Statistic Privacy in Data Sharing","authors":"Zinan Lin;Shuaiqi Wang;Vyas Sekar;Giulia Fanti","doi":"10.1109/JSAIT.2024.3403811","DOIUrl":null,"url":null,"abstract":"We study a setting where a data holder wishes to share data with a receiver, without revealing certain summary statistics of the data distribution (e.g., mean, standard deviation). It achieves this by passing the data through a randomization mechanism. We propose summary statistic privacy, a metric for quantifying the privacy risk of such a mechanism based on the worst-case probability of an adversary guessing the distributional secret within some threshold. Defining distortion as a worst-case Wasserstein-1 distance between the real and released data, we prove lower bounds on the tradeoff between privacy and distortion. We then propose a class of quantization mechanisms that can be adapted to different data distributions. We show that the quantization mechanism’s privacy-distortion tradeoff matches our lower bounds under certain regimes, up to small constant factors. Finally, we demonstrate on real-world datasets that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"5 ","pages":"369-384"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10536016/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a setting where a data holder wishes to share data with a receiver, without revealing certain summary statistics of the data distribution (e.g., mean, standard deviation). It achieves this by passing the data through a randomization mechanism. We propose summary statistic privacy, a metric for quantifying the privacy risk of such a mechanism based on the worst-case probability of an adversary guessing the distributional secret within some threshold. Defining distortion as a worst-case Wasserstein-1 distance between the real and released data, we prove lower bounds on the tradeoff between privacy and distortion. We then propose a class of quantization mechanisms that can be adapted to different data distributions. We show that the quantization mechanism’s privacy-distortion tradeoff matches our lower bounds under certain regimes, up to small constant factors. Finally, we demonstrate on real-world datasets that the proposed quantization mechanisms achieve better privacy-distortion tradeoffs than alternative privacy mechanisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据共享中的隐私问题统计摘要
我们研究的是这样一种情况:数据持有者希望与接收者共享数据,但又不透露数据分布的某些汇总统计数据(如平均值、标准偏差)。它通过随机化机制传递数据来实现这一点。我们提出了 "摘要统计隐私"(summary statistic privacy),这是一种量化这种机制隐私风险的指标,它基于对手在某个阈值内猜测到分布秘密的最坏情况概率。我们将失真定义为真实数据与发布数据之间最坏情况下的 Wasserstein-1 距离,并证明了隐私与失真之间权衡的下限。然后,我们提出了一类可适应不同数据分布的量化机制。我们证明,在某些情况下,量化机制的隐私-失真权衡与我们的下限相匹配,甚至可以达到很小的常数因子。最后,我们在真实世界的数据集上证明,与其他隐私机制相比,所提出的量化机制实现了更好的隐私-失真权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
期刊最新文献
2025 Index Journal on Selected Areas in Information Theory Electromagnetic Information Theory in Phase Space On Algebraic Designing of DNA Codes With Biological and Combinatorial Constraints DNA Tails for Molecular Flash Memory Coding Methods for String Reconstruction From Erroneous Prefix-Suffix Compositions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1