FracAbut: A python toolbox for computing fracture stratigraphy using interface impedance

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-06-18 DOI:10.1016/j.cageo.2024.105656
Paul Joseph Namongo Soro , Juliette Lamarche , Sophie Viseur , Pascal Richard , Fateh Messaadi
{"title":"FracAbut: A python toolbox for computing fracture stratigraphy using interface impedance","authors":"Paul Joseph Namongo Soro ,&nbsp;Juliette Lamarche ,&nbsp;Sophie Viseur ,&nbsp;Pascal Richard ,&nbsp;Fateh Messaadi","doi":"10.1016/j.cageo.2024.105656","DOIUrl":null,"url":null,"abstract":"<div><p>In Naturally Fractured Reservoirs (NFR) diffuse fractures arrangement results from mechanical stratigraphy and tectonic history during failure. Thus, modelling Discrete Fracture Network (DFN) requires to understand and to account for fracture relationships at bed-interface (abutment or crosscutting) in 3D through time (loading path). However, sampling fractures data meaningfully in subsurface has always been a challenge for geologist due to data scarcity.</p><p>To better understand and forecast fracture networks in stratified rocks, we study outcrops with a focus on geometric relationships between stratigraphic interfaces and fractures. This paper presents an original python toolbox called FracAbut. It is composed of 1 main and 2 auxiliary codes that quantify the geometric relation between fractures and stratigraphic interfaces from 1D (wells, scan-line) and 2D (digital image, photographs data). We calculate the Interface Impedance (<em>II</em>) that accounts for fracture abutment (crossing or not), persistence (single- or multi-bed) and propagation polarity (upward or downward). For each stratigraphic interface FracAbut provides information on fractures (type, number) and interface sensitivity (coupling strength).</p><p>First, we apply FracAbut on synthetic case studies, then, on naturally fractured and stratified carbonates in Berat, Albania. Using both 1D scan-line and 2D outcrop photograph, we show that i) a mechanical interface can have different coupling above and below based on propagation polarity, ii) FracAbut results can give useful insight on fracture transmissivity, iii) FracAbut is fast and efficient to quantify fracture patterns and classify mechanical interface impact; iv) they are no relation between bed thickness and fracture propagation.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"190 ","pages":"Article 105656"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001390","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In Naturally Fractured Reservoirs (NFR) diffuse fractures arrangement results from mechanical stratigraphy and tectonic history during failure. Thus, modelling Discrete Fracture Network (DFN) requires to understand and to account for fracture relationships at bed-interface (abutment or crosscutting) in 3D through time (loading path). However, sampling fractures data meaningfully in subsurface has always been a challenge for geologist due to data scarcity.

To better understand and forecast fracture networks in stratified rocks, we study outcrops with a focus on geometric relationships between stratigraphic interfaces and fractures. This paper presents an original python toolbox called FracAbut. It is composed of 1 main and 2 auxiliary codes that quantify the geometric relation between fractures and stratigraphic interfaces from 1D (wells, scan-line) and 2D (digital image, photographs data). We calculate the Interface Impedance (II) that accounts for fracture abutment (crossing or not), persistence (single- or multi-bed) and propagation polarity (upward or downward). For each stratigraphic interface FracAbut provides information on fractures (type, number) and interface sensitivity (coupling strength).

First, we apply FracAbut on synthetic case studies, then, on naturally fractured and stratified carbonates in Berat, Albania. Using both 1D scan-line and 2D outcrop photograph, we show that i) a mechanical interface can have different coupling above and below based on propagation polarity, ii) FracAbut results can give useful insight on fracture transmissivity, iii) FracAbut is fast and efficient to quantify fracture patterns and classify mechanical interface impact; iv) they are no relation between bed thickness and fracture propagation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FracAbut:利用界面阻抗计算断裂地层的 python 工具箱
在天然裂缝储层(NFR)中,裂缝的弥散排列是裂缝破坏过程中机械地层和构造历史造成的。因此,要建立离散断裂网络(DFN)模型,就必须通过时间(加载路径)来理解和解释床层界面(基台或横切)的三维断裂关系。为了更好地理解和预测地层岩石中的断裂网络,我们对露头岩层进行了研究,重点关注地层界面与断裂之间的几何关系。本文介绍了一个名为 FracAbut 的原创 python 工具箱。它由 1 个主代码和 2 个辅助代码组成,可通过一维(井、扫描线)和二维(数字图像、照片数据)量化断裂与地层界面之间的几何关系。我们计算地层界面阻抗(II),其中包括断裂对接(交叉或不交叉)、持续性(单层或多层)和传播极性(向上或向下)。对于每个地层界面,FracAbut 可提供有关断裂(类型、数量)和界面敏感性(耦合强度)的信息。首先,我们将 FracAbut 应用于合成案例研究,然后应用于阿尔巴尼亚贝拉特的天然断裂和层状碳酸盐岩。通过使用一维扫描线和二维露头照片,我们发现:i) 基于传播极性,机械界面的上下耦合度可能不同;ii) FracAbut 的结果可以提供有关断裂透射率的有用信息;iii) FracAbut 可以快速高效地量化断裂模式并对机械界面的影响进行分类;iv) 床厚与断裂传播之间没有关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1