Robust optimization of the Gross Tumor Volume compared to conventional Planning Target Volume-based planning in photon Stereotactic Body Radiation Therapy of lung tumors.
Thomas L Fink, Charlotte Kristiansen, Torben S Hansen, Torben F Hansen, Rune S Thing
{"title":"Robust optimization of the Gross Tumor Volume compared to conventional Planning Target Volume-based planning in photon Stereotactic Body Radiation Therapy of lung tumors.","authors":"Thomas L Fink, Charlotte Kristiansen, Torben S Hansen, Torben F Hansen, Rune S Thing","doi":"10.2340/1651-226X.2024.40049","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Robust optimization has been suggested as an approach to reduce the irradiated volume in lung Stereotactic Body Radiation Therapy (SBRT). We performed a retrospective planning study to investigate the potential benefits over Planning Target Volume (PTV)-based planning.</p><p><strong>Material and methods: </strong>Thirty-nine patients had additional plans using robust optimization with 5-mm isocenter shifts of the Gross Tumor Volume (GTV) created in addition to the PTV-based plan used for treatment. The optimization included the mid-position phase and the extreme breathing phases of the 4D-CT planning scan. The plans were compared for tumor coverage, isodose volumes, and doses to Organs At Risk (OAR). Additionally, we evaluated both plans with respect to observed tumor motion using the peak tumor motion seen on the planning scan and cone-beam CTs.</p><p><strong>Results: </strong>Statistically significant reductions in irradiated isodose volumes and doses to OAR were achieved with robust optimization, while preserving tumor dose. The reductions were largest for the low-dose volumes and reductions up to 188 ccm was observed. The robust evaluation based on observed peak tumor motion showed comparable target doses between the two planning methods. Accumulated mean GTV-dose was increased by a median of 4.46 Gy and a non-significant increase of 100 Monitor Units (MU) was seen in the robust optimized plans.</p><p><strong>Interpretation: </strong>The robust plans required more time to prepare, and while it might not be a feasible planning strategy for all lung SBRT patients, we suggest it might be useful for selected patients.</p>","PeriodicalId":7110,"journal":{"name":"Acta Oncologica","volume":"63 ","pages":"448-455"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332535/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oncologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/1651-226X.2024.40049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Robust optimization has been suggested as an approach to reduce the irradiated volume in lung Stereotactic Body Radiation Therapy (SBRT). We performed a retrospective planning study to investigate the potential benefits over Planning Target Volume (PTV)-based planning.
Material and methods: Thirty-nine patients had additional plans using robust optimization with 5-mm isocenter shifts of the Gross Tumor Volume (GTV) created in addition to the PTV-based plan used for treatment. The optimization included the mid-position phase and the extreme breathing phases of the 4D-CT planning scan. The plans were compared for tumor coverage, isodose volumes, and doses to Organs At Risk (OAR). Additionally, we evaluated both plans with respect to observed tumor motion using the peak tumor motion seen on the planning scan and cone-beam CTs.
Results: Statistically significant reductions in irradiated isodose volumes and doses to OAR were achieved with robust optimization, while preserving tumor dose. The reductions were largest for the low-dose volumes and reductions up to 188 ccm was observed. The robust evaluation based on observed peak tumor motion showed comparable target doses between the two planning methods. Accumulated mean GTV-dose was increased by a median of 4.46 Gy and a non-significant increase of 100 Monitor Units (MU) was seen in the robust optimized plans.
Interpretation: The robust plans required more time to prepare, and while it might not be a feasible planning strategy for all lung SBRT patients, we suggest it might be useful for selected patients.
期刊介绍:
Acta Oncologica is a journal for the clinical oncologist and accepts articles within all fields of clinical cancer research. Articles on tumour pathology, experimental oncology, radiobiology, cancer epidemiology and medical radio physics are also welcome, especially if they have a clinical aim or interest. Scientific articles on cancer nursing and psychological or social aspects of cancer are also welcomed. Extensive material may be published as Supplements, for which special conditions apply.