Mario Sänger, Ninon De Mecquenem, Katarzyna Ewa Lewińska, Vasilis Bountris, Fabian Lehmann, Ulf Leser, Thomas Kosch
{"title":"A qualitative assessment of using ChatGPT as large language model for scientific workflow development.","authors":"Mario Sänger, Ninon De Mecquenem, Katarzyna Ewa Lewińska, Vasilis Bountris, Fabian Lehmann, Ulf Leser, Thomas Kosch","doi":"10.1093/gigascience/giae030","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Scientific workflow systems are increasingly popular for expressing and executing complex data analysis pipelines over large datasets, as they offer reproducibility, dependability, and scalability of analyses by automatic parallelization on large compute clusters. However, implementing workflows is difficult due to the involvement of many black-box tools and the deep infrastructure stack necessary for their execution. Simultaneously, user-supporting tools are rare, and the number of available examples is much lower than in classical programming languages.</p><p><strong>Results: </strong>To address these challenges, we investigate the efficiency of large language models (LLMs), specifically ChatGPT, to support users when dealing with scientific workflows. We performed 3 user studies in 2 scientific domains to evaluate ChatGPT for comprehending, adapting, and extending workflows. Our results indicate that LLMs efficiently interpret workflows but achieve lower performance for exchanging components or purposeful workflow extensions. We characterize their limitations in these challenging scenarios and suggest future research directions.</p><p><strong>Conclusions: </strong>Our results show a high accuracy for comprehending and explaining scientific workflows while achieving a reduced performance for modifying and extending workflow descriptions. These findings clearly illustrate the need for further research in this area.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":null,"pages":null},"PeriodicalIF":11.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giae030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Scientific workflow systems are increasingly popular for expressing and executing complex data analysis pipelines over large datasets, as they offer reproducibility, dependability, and scalability of analyses by automatic parallelization on large compute clusters. However, implementing workflows is difficult due to the involvement of many black-box tools and the deep infrastructure stack necessary for their execution. Simultaneously, user-supporting tools are rare, and the number of available examples is much lower than in classical programming languages.
Results: To address these challenges, we investigate the efficiency of large language models (LLMs), specifically ChatGPT, to support users when dealing with scientific workflows. We performed 3 user studies in 2 scientific domains to evaluate ChatGPT for comprehending, adapting, and extending workflows. Our results indicate that LLMs efficiently interpret workflows but achieve lower performance for exchanging components or purposeful workflow extensions. We characterize their limitations in these challenging scenarios and suggest future research directions.
Conclusions: Our results show a high accuracy for comprehending and explaining scientific workflows while achieving a reduced performance for modifying and extending workflow descriptions. These findings clearly illustrate the need for further research in this area.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.