Flight or fight: different strategies of intertidal periwinkle Littoraria sinensis coping with high temperature across populations.

IF 3.5 1区 生物学 Q1 ZOOLOGY Integrative zoology Pub Date : 2024-06-19 DOI:10.1111/1749-4877.12857
Ning Zhang, Lin-Xuan Ma, Yun-Wei Dong
{"title":"Flight or fight: different strategies of intertidal periwinkle Littoraria sinensis coping with high temperature across populations.","authors":"Ning Zhang, Lin-Xuan Ma, Yun-Wei Dong","doi":"10.1111/1749-4877.12857","DOIUrl":null,"url":null,"abstract":"<p><p>Intertidal organisms usually live near their upper thermal limits, and are vulnerable to future global warming. As a vital response to thermal stress, thermoregulatory strategy in physiological and behavioral performance is essential for organisms coping with thermal stress and surviving the changing world. To investigate the relationship between the thermoregulatory strategy and habitat temperature, in the present study, we comparatively investigated the thermal responsive strategy among different geographic populations of the supralittoral snail Littoraria sinensis by determining snails' cardiac function and behavioral performance. Our results indicated that populations inhabiting high ambient temperatures had higher sublethal temperatures (i.e. Arrhenius breakpoint temperatures, ABTs, the temperature at which the heart rate shapely decreases with further heating) and lethal temperatures (i.e. Flatline temperatures, FLTs, the temperature at which heart rate ceases), and behaved less actively (e.g. shorter moving distances and shorter moving time) in the face of high and rising temperatures-a physiological fight strategy. On the other hand, populations at relatively low ambient temperatures had relatively lower physiological upper thermal limits with lower ABTs and FLTs and moved more actively in the face of high and rising temperatures-a behavioral flight strategy. These results demonstrate that the thermoregulatory strategies of the snails are closely related to their habitat temperatures and are different among populations surviving divergent thermal environments.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12857","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intertidal organisms usually live near their upper thermal limits, and are vulnerable to future global warming. As a vital response to thermal stress, thermoregulatory strategy in physiological and behavioral performance is essential for organisms coping with thermal stress and surviving the changing world. To investigate the relationship between the thermoregulatory strategy and habitat temperature, in the present study, we comparatively investigated the thermal responsive strategy among different geographic populations of the supralittoral snail Littoraria sinensis by determining snails' cardiac function and behavioral performance. Our results indicated that populations inhabiting high ambient temperatures had higher sublethal temperatures (i.e. Arrhenius breakpoint temperatures, ABTs, the temperature at which the heart rate shapely decreases with further heating) and lethal temperatures (i.e. Flatline temperatures, FLTs, the temperature at which heart rate ceases), and behaved less actively (e.g. shorter moving distances and shorter moving time) in the face of high and rising temperatures-a physiological fight strategy. On the other hand, populations at relatively low ambient temperatures had relatively lower physiological upper thermal limits with lower ABTs and FLTs and moved more actively in the face of high and rising temperatures-a behavioral flight strategy. These results demonstrate that the thermoregulatory strategies of the snails are closely related to their habitat temperatures and are different among populations surviving divergent thermal environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逃跑还是战斗:潮间带长春花不同种群应对高温的不同策略。
潮间带生物通常生活在其热上限附近,很容易受到未来全球变暖的影响。作为对热应力的重要反应,生理和行为表现中的体温调节策略对生物应对热应力和在不断变化的世界中生存至关重要。为了研究体温调节策略与栖息地温度之间的关系,本研究通过测定中华绒蜗牛的心脏功能和行为表现,比较研究了不同地理种群中华绒蜗牛的热响应策略。结果表明,环境温度较高时,种群的亚致死温度(即阿伦尼乌斯断点温度,ABTs,心率随温度升高而逐渐降低的温度)和致死温度(即平线温度,FLTs,心率停止的温度)较高,面对高温和升温,行为较不活跃(如移动距离缩短和移动时间缩短)--这是一种生理抗争策略。另一方面,环境温度相对较低时,种群的生理热上限相对较低,ABT和FLT较低,面对高温和气温升高时行动更积极--这是一种行为逃逸策略。这些结果表明,蜗牛的体温调节策略与其栖息地的温度密切相关,在不同热环境中生存的种群之间存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
12.10%
发文量
81
审稿时长
>12 weeks
期刊介绍: The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society. Integrative topics of greatest interest to INZ include: (1) Animals & climate change (2) Animals & pollution (3) Animals & infectious diseases (4) Animals & biological invasions (5) Animal-plant interactions (6) Zoogeography & paleontology (7) Neurons, genes & behavior (8) Molecular ecology & evolution (9) Physiological adaptations
期刊最新文献
Constitutive innate immune defenses in relation to urbanization and population density in an urban bird, the feral pigeon Columba livia domestica. Revealing the key signals in nestling begging behavior perceived by parent birds during parent–offspring conflict Shifting microbial communities in acidified seawaters: insights from polychaetes living in the CO2 vent of Ischia, Italy Genomic analysis and behavioral ecology records of the vulnerable Kong skate (Okamejei kenojei) Adaptive evolution of pancreatic ribonuclease gene (RNase1) in Cetartiodactyla
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1