Distribution and correlates of plasma folate, vitamin B12, and homocysteine in a sample of low-income minority children aged 6 months to 9 years in the U.S.
{"title":"Distribution and correlates of plasma folate, vitamin B12, and homocysteine in a sample of low-income minority children aged 6 months to 9 years in the U.S.","authors":"Yuyi Chen, Xiaoyu Che, Ramkripa Raghavan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Precision nutrition emphasizes tailoring dietary requirements across populations and life stages. Optimal folate and vitamin B12 levels are important for normal growth and development, but data are lacking for low-income minority U.S. children during early life periods. This study aimed to describe folate, vitamin B12, homocysteine (Hcy) levels, and influencing factors to address the gaps.</p><p><strong>Methods: </strong>Blood samples from children aged 6 months to 9 years and mothers 48-72 hours postpartum in the Boston Birth Cohort (BBC) were tested for folate, vitamin B12, and Hcy. Maternal and child characteristics, sociodemographic factors, and feeding status were obtained from a standard maternal questionnaire interview at the enrollment and follow-up, and medical records. The distribution of children's folate, vitamin B12, and Hcy were described and factors influencing these biomarkers were analyzed.</p><p><strong>Results: </strong>A wide distribution of folate, vitamin B12, and Hcy levels was observed in this sample, with longitudinal trends consistent with National Health and Nutrition Examination Survey (NHANES) data. Multivariate analysis showed that very preterm birth correlated with higher folate levels (adjusted β 4.236; 95% CI: 1.218, 7.253; p=0.006). Children aged 1-2 years and 3-8 years had lower folate levels compared to those <1 year (adjusted β -10.191 and -7.499 respectively; p<0.001). Vitamin B12 levels were higher in Black children (adjusted fold change 1.139; 95% CI: 1.052, 1.233; p=0.001) and those children whose mothers' B12 levels were at the highest quartile (Q4) (adjusted fold change 1.229; 95% CI: 1.094, 1.380; p=0.001). Delayed solid food introduction (> 6 months) correlated with lower children's B12 levels (adjusted fold change 0.888; 95% CI: 0.809, 0.975; p=0.013). Hcy levels were lower in Black children (adjusted fold change 0.962; 95% CI: 0.932, 0.993; p=0.018), higher in children with maternal Hcy levels in Q4 (adjusted fold change 1.081; 95% CI: 1.03, 1.135; p=0.002) and in children aged 3-8 years (adjusted fold change 1.084; 95% CI: 1.040, 1.131; p< 0.001).</p><p><strong>Conclusions: </strong>This study revealed wide variations in plasma folate, vitamin B12, and Hcy levels among low-income minority U.S. children and identified race, maternal levels, child's age, prematurity, and timing of solid food introduction as significant correlates.</p>","PeriodicalId":74488,"journal":{"name":"Precision nutrition","volume":"3 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision nutrition","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Precision nutrition emphasizes tailoring dietary requirements across populations and life stages. Optimal folate and vitamin B12 levels are important for normal growth and development, but data are lacking for low-income minority U.S. children during early life periods. This study aimed to describe folate, vitamin B12, homocysteine (Hcy) levels, and influencing factors to address the gaps.
Methods: Blood samples from children aged 6 months to 9 years and mothers 48-72 hours postpartum in the Boston Birth Cohort (BBC) were tested for folate, vitamin B12, and Hcy. Maternal and child characteristics, sociodemographic factors, and feeding status were obtained from a standard maternal questionnaire interview at the enrollment and follow-up, and medical records. The distribution of children's folate, vitamin B12, and Hcy were described and factors influencing these biomarkers were analyzed.
Results: A wide distribution of folate, vitamin B12, and Hcy levels was observed in this sample, with longitudinal trends consistent with National Health and Nutrition Examination Survey (NHANES) data. Multivariate analysis showed that very preterm birth correlated with higher folate levels (adjusted β 4.236; 95% CI: 1.218, 7.253; p=0.006). Children aged 1-2 years and 3-8 years had lower folate levels compared to those <1 year (adjusted β -10.191 and -7.499 respectively; p<0.001). Vitamin B12 levels were higher in Black children (adjusted fold change 1.139; 95% CI: 1.052, 1.233; p=0.001) and those children whose mothers' B12 levels were at the highest quartile (Q4) (adjusted fold change 1.229; 95% CI: 1.094, 1.380; p=0.001). Delayed solid food introduction (> 6 months) correlated with lower children's B12 levels (adjusted fold change 0.888; 95% CI: 0.809, 0.975; p=0.013). Hcy levels were lower in Black children (adjusted fold change 0.962; 95% CI: 0.932, 0.993; p=0.018), higher in children with maternal Hcy levels in Q4 (adjusted fold change 1.081; 95% CI: 1.03, 1.135; p=0.002) and in children aged 3-8 years (adjusted fold change 1.084; 95% CI: 1.040, 1.131; p< 0.001).
Conclusions: This study revealed wide variations in plasma folate, vitamin B12, and Hcy levels among low-income minority U.S. children and identified race, maternal levels, child's age, prematurity, and timing of solid food introduction as significant correlates.