{"title":"MiR-23b-3p alleviates Sjögren's syndrome by targeting SOX6 and inhibiting the NF-κB signaling","authors":"Yan Cai , Yi Zhang , Sihan Wang , E. Changyong","doi":"10.1016/j.molimm.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>MicroRNA-23b-3p has been demonstrated to act as a safeguard against several autoimmune diseases. However, its role in Sjögren's syndrome (SS) remains unclear.</p></div><div><h3>Methods</h3><p>In order to investigate its role in SS, we administered agomiR-23b-3p or agomiR-NC to non-obese diabetic (NOD) mice via tail vein weekly for 6 weeks. The study examined the saliva flow rate, histological changes in submandibular glands, and levels of autoantibodies. Additionally, the levels of several cytokines, cell apoptosis, and NF-κB signaling were evaluated. The protective effect of miR-23b-3p was confirmed in a cell model.</p></div><div><h3>Results</h3><p>The results demonstrated that miR-23b-3p overexpression improved salivary flow rates, inhibited lymphocyte infiltration, reduced cytokine levels, and suppressed cell apoptosis in NOD mice. Moreover, NF-κB signaling was inactivated following miR-23b-3p overexpression. In a cellular model of SS, overexpression of miR-23b-3p protected submandibular gland epithelial cells exposed to IFN-γ against apoptosis and inflammation by targeting SOX6.</p></div><div><h3>Conclusions</h3><p>The study concludes that miR-23b-3p alleviates SS by targeting SOX6 and inhibiting the NF-κB signaling pathway. The miR-23b-3p/SOX6 axis represents a promising avenue for the development of novel therapeutic strategies for SS.</p></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"172 ","pages":"Pages 68-75"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024001044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
MicroRNA-23b-3p has been demonstrated to act as a safeguard against several autoimmune diseases. However, its role in Sjögren's syndrome (SS) remains unclear.
Methods
In order to investigate its role in SS, we administered agomiR-23b-3p or agomiR-NC to non-obese diabetic (NOD) mice via tail vein weekly for 6 weeks. The study examined the saliva flow rate, histological changes in submandibular glands, and levels of autoantibodies. Additionally, the levels of several cytokines, cell apoptosis, and NF-κB signaling were evaluated. The protective effect of miR-23b-3p was confirmed in a cell model.
Results
The results demonstrated that miR-23b-3p overexpression improved salivary flow rates, inhibited lymphocyte infiltration, reduced cytokine levels, and suppressed cell apoptosis in NOD mice. Moreover, NF-κB signaling was inactivated following miR-23b-3p overexpression. In a cellular model of SS, overexpression of miR-23b-3p protected submandibular gland epithelial cells exposed to IFN-γ against apoptosis and inflammation by targeting SOX6.
Conclusions
The study concludes that miR-23b-3p alleviates SS by targeting SOX6 and inhibiting the NF-κB signaling pathway. The miR-23b-3p/SOX6 axis represents a promising avenue for the development of novel therapeutic strategies for SS.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.