Adaptive Age of Information Optimization in Rateless Coding-Based Multicast-Enabled Sensor Networks

Hung-Chun Lin;Kuang-Hsun Lin;Hung-Yu Wei
{"title":"Adaptive Age of Information Optimization in Rateless Coding-Based Multicast-Enabled Sensor Networks","authors":"Hung-Chun Lin;Kuang-Hsun Lin;Hung-Yu Wei","doi":"10.1109/JSAS.2024.3407689","DOIUrl":null,"url":null,"abstract":"As the demand for real-time information in Internet of Things and wireless sensor networks (WSN) scenarios grows with the evolution of bandwidth-intensive 5G applications, multicast transmission becomes increasingly vital. This article delves into the significant role of multicast in WSN, exploring a novel perspective of using rateless codes over the traditionally employed hybrid automatic repeat request for eliminating retransmissions in a wireless multicast system. We aim to optimize data freshness, quantified by the age of information (AoI), and analyze strategies to minimize time-average AoI in a multicast environment with diverse channel conditions. Specifically, our policy focuses on optimizing the time-average AoI based on sensor devices' feedback. We transform the problem into a Markov decision process to locate optimal and low-complexity suboptimal policies. We present the first age-minimum scheme for rateless code-based wireless multicast systems. Our numerical simulations reveal that the proposed policies, developed considering unique system structural properties, consistently surpass baseline strategies. We are thus able to preempt updates at the most beneficial time, thereby addressing the issue of the bottleneck device's adverse impact on overall performance.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"73-92"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542217","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10542217/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for real-time information in Internet of Things and wireless sensor networks (WSN) scenarios grows with the evolution of bandwidth-intensive 5G applications, multicast transmission becomes increasingly vital. This article delves into the significant role of multicast in WSN, exploring a novel perspective of using rateless codes over the traditionally employed hybrid automatic repeat request for eliminating retransmissions in a wireless multicast system. We aim to optimize data freshness, quantified by the age of information (AoI), and analyze strategies to minimize time-average AoI in a multicast environment with diverse channel conditions. Specifically, our policy focuses on optimizing the time-average AoI based on sensor devices' feedback. We transform the problem into a Markov decision process to locate optimal and low-complexity suboptimal policies. We present the first age-minimum scheme for rateless code-based wireless multicast systems. Our numerical simulations reveal that the proposed policies, developed considering unique system structural properties, consistently surpass baseline strategies. We are thus able to preempt updates at the most beneficial time, thereby addressing the issue of the bottleneck device's adverse impact on overall performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无鼠编码的多播传感器网络中的自适应信息优化时代
随着带宽密集型 5G 应用的发展,物联网和无线传感器网络 (WSN) 场景对实时信息的需求日益增长,组播传输变得越来越重要。本文深入探讨了组播在 WSN 中的重要作用,探索了在无线组播系统中使用无速率编码消除重传的新视角,而不是传统采用的混合自动重复请求。我们的目标是优化数据新鲜度(以信息年龄(AoI)量化),并分析在具有不同信道条件的组播环境中最小化时间平均 AoI 的策略。具体来说,我们的策略侧重于根据传感器设备的反馈优化时间平均 AoI。我们将问题转化为马尔可夫决策过程,以找到最优和低复杂度次优策略。我们首次提出了基于无速率代码的无线组播系统的最小年龄方案。我们的数值模拟显示,考虑到独特的系统结构特性而制定的拟议策略始终超越基准策略。因此,我们能够在最有利的时机抢先更新,从而解决瓶颈设备对整体性能产生不利影响的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey on Digital Twins: Enabling Technologies, Use Cases, Application, Open Issues, and More FallAware: An Explainable Learning Approach to Robust Fall Detection With WiFi Nonparametric Multitarget Data Association and Tracking for Multistatic Radars SrcSense: Robust WiFi-Based Motion Source Recognition via Signal-Informed Deep Learning Assessing the Impact of Distractions Using a Virtual-Reality-Based GO/NOGO Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1