Constraints on the dense matter equation of state from young and cold isolated neutron stars

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Nature Astronomy Pub Date : 2024-06-20 DOI:10.1038/s41550-024-02291-y
A. Marino, C. Dehman, K. Kovlakas, N. Rea, J. A. Pons, D. Viganò
{"title":"Constraints on the dense matter equation of state from young and cold isolated neutron stars","authors":"A. Marino, C. Dehman, K. Kovlakas, N. Rea, J. A. Pons, D. Viganò","doi":"10.1038/s41550-024-02291-y","DOIUrl":null,"url":null,"abstract":"Neutron stars are the dense and highly magnetic relics of supernova explosions of massive stars. The quest to constrain the equation of state (EOS) of ultradense matter and thereby probe the behaviour of matter inside neutron stars is one of the core goals of modern physics and astrophysics. A promising method involves investigating the long-term cooling of neutron stars, comparing theoretical predictions with various sources at different ages. However, limited observational data, and uncertainties in source ages and distances, have hindered this approach. Here, by re-analysing XMM-Newton and Chandra data from dozens of thermally emitting isolated neutron stars, we have identified three sources with unexpectedly cold surface temperatures for their young ages. To investigate these anomalies, we conducted magneto-thermal simulations across diverse mass and magnetic fields, considering three different EOSs. We found that the ’minimal’ cooling model failed to explain the observations, regardless of the mass and the magnetic field, as validated by a machine learning classification method. The existence of these young cold neutron stars suggests that any dense matter EOS must be compatible with a fast cooling process at least in certain mass ranges, eliminating a significant portion of current EOS options according to recent meta-modelling analysis. The quest to understand the composition of neutron stars is a major challenge of modern physics. Here three isolated, young and cold neutron stars have been identified, showing how extremely dense matter can cool rapidly after a supernova explosion.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 8","pages":"1020-1030"},"PeriodicalIF":12.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02291-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Neutron stars are the dense and highly magnetic relics of supernova explosions of massive stars. The quest to constrain the equation of state (EOS) of ultradense matter and thereby probe the behaviour of matter inside neutron stars is one of the core goals of modern physics and astrophysics. A promising method involves investigating the long-term cooling of neutron stars, comparing theoretical predictions with various sources at different ages. However, limited observational data, and uncertainties in source ages and distances, have hindered this approach. Here, by re-analysing XMM-Newton and Chandra data from dozens of thermally emitting isolated neutron stars, we have identified three sources with unexpectedly cold surface temperatures for their young ages. To investigate these anomalies, we conducted magneto-thermal simulations across diverse mass and magnetic fields, considering three different EOSs. We found that the ’minimal’ cooling model failed to explain the observations, regardless of the mass and the magnetic field, as validated by a machine learning classification method. The existence of these young cold neutron stars suggests that any dense matter EOS must be compatible with a fast cooling process at least in certain mass ranges, eliminating a significant portion of current EOS options according to recent meta-modelling analysis. The quest to understand the composition of neutron stars is a major challenge of modern physics. Here three isolated, young and cold neutron stars have been identified, showing how extremely dense matter can cool rapidly after a supernova explosion.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自年轻和寒冷孤立中子星的致密物质状态方程约束
中子星是大质量恒星超新星爆炸的致密高磁遗迹。探索超致密物质的状态方程(EOS),从而探测中子星内部物质的行为,是现代物理学和天体物理学的核心目标之一。一种很有前途的方法是研究中子星的长期冷却,将理论预测与不同年龄的各种来源进行比较。然而,有限的观测数据以及源年龄和距离的不确定性阻碍了这一方法的实施。在这里,通过重新分析来自数十颗热辐射孤立中子星的XMM-牛顿和钱德拉数据,我们发现了三个表面温度出乎意料地低的年轻中子星源。为了研究这些异常现象,我们对不同质量和磁场的中子星进行了磁热模拟,并考虑了三种不同的EOS。我们发现,无论质量和磁场如何,"最小 "冷却模型都无法解释观测结果,机器学习分类方法也验证了这一点。这些年轻冷中子星的存在表明,至少在某些质量范围内,任何致密物质的EOS都必须与快速冷却过程相兼容,根据最近的元建模分析,目前的EOS选择有很大一部分被排除了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
期刊最新文献
A supersolar oxygen abundance supported by hydrodynamic modelling of Jupiter’s atmosphere Sodium carbonates on Ryugu as evidence of highly saline water in the outer Solar System The first piece of Euclid’s cosmic puzzle Could the perfect stellar fly-by have shaped our Solar System? Complementary missions for Solar System exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1