Synthetic approaches of carbohydrate based self-assembling systems

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC Organic & Biomolecular Chemistry Pub Date : 2024-07-10 DOI:10.1039/d4ob00636d
{"title":"Synthetic approaches of carbohydrate based self-assembling systems","authors":"","doi":"10.1039/d4ob00636d","DOIUrl":null,"url":null,"abstract":"<div><p>Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials <em>via</em> a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.</p></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ob/d4ob00636d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052024005603","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于碳水化合物的自组装系统的合成方法。
基于碳水化合物的自组装系统对于通过自下而上的方法形成先进的生物兼容材料至关重要。糖基小分子的自组装应用于多个研究领域,并已得到广泛研究。在这篇重点综述中,我们将讨论基于碳水化合物的自组装(SA)系统的合成方法、组装机制以及主要特性和应用。本综述主要涵盖 2020 年 1 月至 2023 年 12 月这四年内发表的最新论文。我们将主要关注小分子自组装,不包括基于聚合物的系统,其中包括单糖、双糖和寡糖的各种衍生物。我们还将讨论糖脂、糖肽和一些以糖共轭物为基础的系统。通常情况下,在每一类系统中,首先讨论可作为低分子量凝胶体(LMWGs)的系统,然后讨论可产生胶束和聚集体的自组装系统。综述的最后一部分将讨论刺激响应型自组装系统,特别是那些形成凝胶的系统,包括动态共价组装、化学触发系统和光致反应系统。综述将根据糖结构进行编排,在每个类别中,接下来将讨论具有代表性的分子系统的合成,然后是所产生的分子组装体的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: The international home of synthetic, physical and biomolecular organic chemistry.
期刊最新文献
Photocatalytic difunctionalization of arylalkenes with quinoxalinones and dialkyl dithiophosphoric acids. Synthesis of metal-binding amino acids. Thapsigargin: a promising natural product with diverse medicinal potential - a review of synthetic approaches and total syntheses. Synthesis of dithioacetals via nucleophilic substitution and their antifungal activity evaluation. Synthesis of N-heterocyclic compounds using N,N-dimethylacetamides as an electrophilic carbon source.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1