RBD design increases the functional antibody titers elicited by SARS-CoV-2 spike vaccination

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Antiviral research Pub Date : 2024-06-18 DOI:10.1016/j.antiviral.2024.105937
Thayne H. Dickey , Nichole D. Salinas , Palak Patel , Sachy Orr-Gonzalez , Tarik Ouahes , Holly McAleese , Brandi L. Richardson , Myesha Singleton , Michael Murphy , Brett Eaton , Jennifer L. Kwan , Michael R. Holbrook , Lynn E. Lambert , Niraj H. Tolia
{"title":"RBD design increases the functional antibody titers elicited by SARS-CoV-2 spike vaccination","authors":"Thayne H. Dickey ,&nbsp;Nichole D. Salinas ,&nbsp;Palak Patel ,&nbsp;Sachy Orr-Gonzalez ,&nbsp;Tarik Ouahes ,&nbsp;Holly McAleese ,&nbsp;Brandi L. Richardson ,&nbsp;Myesha Singleton ,&nbsp;Michael Murphy ,&nbsp;Brett Eaton ,&nbsp;Jennifer L. Kwan ,&nbsp;Michael R. Holbrook ,&nbsp;Lynn E. Lambert ,&nbsp;Niraj H. Tolia","doi":"10.1016/j.antiviral.2024.105937","DOIUrl":null,"url":null,"abstract":"<div><p>Most COVID-19 vaccines contain the SARS-CoV-2 spike protein as an antigen, but they lose efficacy as neutralizing antibody titers wane and escape variants emerge. Modifying the spike antigen to increase neutralizing antibody titers would help counteract this decrease in titer. We previously used a structure-based computational design method to identify nine amino acid changes in the receptor-binding domain (RBD) of spike that stabilize the RBD and increase the neutralizing antibody titers elicited by vaccination. Here, we introduce those enhancing amino acid changes into a full-length spike (FL-S-2P) ectodomain representative of most approved vaccine antigens. These amino acid changes can be incorporated into the FL-S-2P protein without negatively effecting expression or stability. Furthermore, the amino acid changes improved functional antibody titers in both mice and monkeys following vaccination. These amino acid changes could increase the duration of protection conferred by most COVID-19 vaccines.</p></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"228 ","pages":"Article 105937"},"PeriodicalIF":4.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354224001463","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Most COVID-19 vaccines contain the SARS-CoV-2 spike protein as an antigen, but they lose efficacy as neutralizing antibody titers wane and escape variants emerge. Modifying the spike antigen to increase neutralizing antibody titers would help counteract this decrease in titer. We previously used a structure-based computational design method to identify nine amino acid changes in the receptor-binding domain (RBD) of spike that stabilize the RBD and increase the neutralizing antibody titers elicited by vaccination. Here, we introduce those enhancing amino acid changes into a full-length spike (FL-S-2P) ectodomain representative of most approved vaccine antigens. These amino acid changes can be incorporated into the FL-S-2P protein without negatively effecting expression or stability. Furthermore, the amino acid changes improved functional antibody titers in both mice and monkeys following vaccination. These amino acid changes could increase the duration of protection conferred by most COVID-19 vaccines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RBD 设计可提高 SARS-CoV-2 穗状疫苗激发的功能性抗体滴度。
大多数 COVID-19 疫苗都含有作为抗原的 SARS-CoV-2 穗状病毒蛋白,但随着中和抗体滴度的降低和逃逸变种的出现,这些疫苗的效力也随之降低。改造尖峰抗原以提高中和抗体滴度将有助于抵消滴度的下降。我们之前使用了一种基于结构的计算设计方法,确定了尖峰抗原受体结合域(RBD)中的九个氨基酸变化,这些变化可以稳定 RBD 并提高疫苗接种所激发的中和抗体滴度。在此,我们将这些增强性氨基酸变化引入到代表大多数获批疫苗抗原的全长斯派克(FL-S-2P)外结构域中。这些氨基酸变化可以整合到 FL-S-2P 蛋白中,而不会对其表达或稳定性产生负面影响。此外,氨基酸变化还能提高小鼠和猴子接种疫苗后的功能性抗体滴度。这些氨基酸变化可以延长大多数 COVID-19 疫苗的保护期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
期刊最新文献
Development of lipopeptide-based HIV-1/2 fusion inhibitors targeting the gp41 pocket site with a new design strategy. Preventing human influenza and coronaviral mono or coinfection by blocking virus-induced sialylation. Biological characterization of AB-343, a novel and potent SARS-CoV-2 Mpro inhibitor with pan-coronavirus activity Edible bird's nest: N- and O-glycan analysis and synergistic anti-avian influenza virus activity with neuraminidase inhibitors. X-206 exhibits broad-spectrum anti-β-coronavirus activity, covering SARS-CoV-2 variants and drug-resistant isolates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1