Cellulose acetate scaffold coated with a hydroxyapatite/graphene oxide nanocomposite for application in tissue engineering.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine Pub Date : 2024-07-01 Epub Date: 2024-06-20 DOI:10.1177/09544119241256715
Luan Dos Santos Menezes, Daniel Navarro da Rocha, Renato Carajelescov Nonato, Ana Rosa Costa, Ana Rita Morales, Lourenço Correr-Sobrinho, Américo Bortolazzo Correr, José Guilherme Neves
{"title":"Cellulose acetate scaffold coated with a hydroxyapatite/graphene oxide nanocomposite for application in tissue engineering.","authors":"Luan Dos Santos Menezes, Daniel Navarro da Rocha, Renato Carajelescov Nonato, Ana Rosa Costa, Ana Rita Morales, Lourenço Correr-Sobrinho, Américo Bortolazzo Correr, José Guilherme Neves","doi":"10.1177/09544119241256715","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to synthesize and characterize porous Cellulose Acetate (CA) scaffolds using the electrospinning technique and functionalize the surface of the scaffolds obtained through the dip-coating method with a Hydroxyapatite (HA) nanocomposite and varying concentrations of graphene oxide (GO) for application in tissue engineering regeneration techniques. The scaffolds were divided into four distinct groups based on their composition: 1) CA scaffolds; 2) CAHAC scaffolds; 3) CAHAGOC 1.0% scaffolds; 4) CAHAGOC 1.5% scaffolds. Scaffold analyses were conducted using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis, Variance (two-way) was used, followed by Tukey's post-test (α = 0.05). The XRD results revealed the predominant presence of CaP phases in the CAHAC, CAHAGOC 1.0%, and CAHAGOC 1.5% groups, emphasizing the presence of HA in the scaffolds. FTIR demonstrated characteristics of cellulose and PO4 bands in the groups containing HA, confirming the presence of CaP in the synthesized materials, as also indicated by XRD. Raman spectroscopy showed the presence of D and G bands, consistent with GO, confirming the successful incorporation of the HAGO nanocomposite into the scaffolds. The micrographs displayed overlapping electrospun fibers, forming the three-dimensional structure in the produced scaffolds. It was possible to observe hydroxyapatite crystals filling some of these pores, creating a suitable structure for cell adhesion, proliferation, and nutrition, as corroborated by the results of in vitro tests. All scaffolds exhibited high cell viability, with significant cell proliferation. Even after 48 h, there was a slight reduction in the number of cells, but a noteworthy increase in cell proliferation was evident in the CAHAGOC 1.5% group after 48 h (<i>p</i> < 0.05). In conclusion, it can be affirmed that the produced scaffolds demonstrated physical and biological characteristics and properties capable of promoting cell adhesion and proliferation. Therefore, they represent significant potential for application in tissue engineering, offering a new perspective regarding techniques and biomaterials applied in regenerative therapies.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119241256715","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study was to synthesize and characterize porous Cellulose Acetate (CA) scaffolds using the electrospinning technique and functionalize the surface of the scaffolds obtained through the dip-coating method with a Hydroxyapatite (HA) nanocomposite and varying concentrations of graphene oxide (GO) for application in tissue engineering regeneration techniques. The scaffolds were divided into four distinct groups based on their composition: 1) CA scaffolds; 2) CAHAC scaffolds; 3) CAHAGOC 1.0% scaffolds; 4) CAHAGOC 1.5% scaffolds. Scaffold analyses were conducted using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS), and in vitro cell viability assays (WST). For the biological test analysis, Variance (two-way) was used, followed by Tukey's post-test (α = 0.05). The XRD results revealed the predominant presence of CaP phases in the CAHAC, CAHAGOC 1.0%, and CAHAGOC 1.5% groups, emphasizing the presence of HA in the scaffolds. FTIR demonstrated characteristics of cellulose and PO4 bands in the groups containing HA, confirming the presence of CaP in the synthesized materials, as also indicated by XRD. Raman spectroscopy showed the presence of D and G bands, consistent with GO, confirming the successful incorporation of the HAGO nanocomposite into the scaffolds. The micrographs displayed overlapping electrospun fibers, forming the three-dimensional structure in the produced scaffolds. It was possible to observe hydroxyapatite crystals filling some of these pores, creating a suitable structure for cell adhesion, proliferation, and nutrition, as corroborated by the results of in vitro tests. All scaffolds exhibited high cell viability, with significant cell proliferation. Even after 48 h, there was a slight reduction in the number of cells, but a noteworthy increase in cell proliferation was evident in the CAHAGOC 1.5% group after 48 h (p < 0.05). In conclusion, it can be affirmed that the produced scaffolds demonstrated physical and biological characteristics and properties capable of promoting cell adhesion and proliferation. Therefore, they represent significant potential for application in tissue engineering, offering a new perspective regarding techniques and biomaterials applied in regenerative therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用于组织工程的涂有羟基磷灰石/氧化石墨烯纳米复合材料的醋酸纤维素支架。
本研究的目的是利用电纺丝技术合成多孔醋酸纤维素(CA)支架并对其进行表征,然后用羟基磷灰石(HA)纳米复合材料和不同浓度的氧化石墨烯(GO)对通过浸涂法获得的支架表面进行功能化处理,以应用于组织工程再生技术。这些支架根据其成分分为四组:1) CA 支架;2) CAHAC 支架;3) CAHAGOC 1.0% 支架;4) CAHAGOC 1.5% 支架。使用 X 射线衍射 (XRD)、傅立叶变换红外光谱 (FTIR)、拉曼光谱、扫描电子显微镜与能量色散光谱 (SEM/EDS) 和体外细胞活力检测 (WST) 对支架进行了分析。生物测试分析采用方差(双向),然后进行 Tukey 后检验(α = 0.05)。XRD 结果显示,CAHAC、CAHAGOC 1.0% 和 CAHAGOC 1.5% 组中主要存在 CaP 相,强调了支架中存在 HA。傅立叶变换红外光谱(FTIR)显示,含有 HA 的组别具有纤维素和 PO4 带的特征,证实了合成材料中存在 CaP,XRD 也表明了这一点。拉曼光谱显示存在与 GO 一致的 D 和 G 波段,证实 HAGO 纳米复合材料成功地融入了支架中。显微照片显示重叠的电纺纤维形成了所制支架的三维结构。可以观察到羟基磷灰石晶体填充了其中的一些孔隙,形成了适合细胞粘附、增殖和营养的结构,体外测试的结果也证实了这一点。所有支架都显示出较高的细胞活力,细胞增殖显著。即使在 48 小时后,细胞数量也略有减少,但在 48 小时后,CAHAGOC 1.5% 组的细胞增殖明显增加(p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
期刊最新文献
Artificial intelligence and health-related data: The patient’s best interest and data ownership dilemma Explant analysis of a chromium nitride coated metal-on-metal total wrist replacement: A case study Effects of self-etch adhesive agitation with diode laser on dentin bond strength Computational analysis of the biomechanical stability of internal fixation of the lateral tibial plateau fracture: A mechanical stability study. The effect of structural changes on the low strain rate behaviour of the intervertebral disc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1