Ágnes Dencs , Andrea Hettmann , Erzsébet Barcsay , Erzsébet Rusvai , Emese Kozma , Mária Takács
{"title":"Hepatitis A virus subtype IB outbreak among MSM in Hungary with a link to a frozen berry source","authors":"Ágnes Dencs , Andrea Hettmann , Erzsébet Barcsay , Erzsébet Rusvai , Emese Kozma , Mária Takács","doi":"10.1016/j.meegid.2024.105622","DOIUrl":null,"url":null,"abstract":"<div><p>Men who have sex with men (MSM) are at high risk of acquiring hepatitis A virus (HAV) and in recent years several HAV outbreaks mostly affecting MSM have been described. These outbreaks were caused by subtype IA strains circulating in this high-risk population. After years of low incidence, an outbreak among MSM in Hungary caused a significant increase in reported HAV infections in 2022.</p><p>Samples from 224 HAV IgM-positive patients diagnosed in 2022 were tested for HAV RNA and positive samples were genotyped by sequencing. In 171 patients a unique subtype IB virus was detected with 99.8–100% sequence identity in the VP1/P2A junction. It was distinct from previously published strains, but most closely related to an Egyptian isolate. Sequence analysis revealed one dominant and three minor variants based on VP1/P2A. Whole genome sequencing revealed limited variation among these variants, suggesting a recent common origin. Epidemiological data indicated that sexual transmission was driving the outbreak for most of the year, suggested by the high male to female ratio and the large number of coinfections with HIV and other sexually transmitted infections among the patients. The outbreak was also associated with a restaurant cluster, in which one of the variants was detected and frozen berries were implicated as the source of infections. The outbreak strain was also detected in other countries around Europe and remained frequently detectable in Hungary in 2023.</p><p>This study provides insights into the molecular and epidemiological characteristics of the described HAV outbreak. The results show that sequencing is not only useful in connecting cases to an outbreak, but also helps to clarify the relatedness of detected variants. Prevention strategies focusing on vulnerable communities may reduce the burden of HAV infections in the future.</p></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"123 ","pages":"Article 105622"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156713482400073X/pdfft?md5=8e2480defbdf74b54464b5c2ba77a316&pid=1-s2.0-S156713482400073X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156713482400073X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Men who have sex with men (MSM) are at high risk of acquiring hepatitis A virus (HAV) and in recent years several HAV outbreaks mostly affecting MSM have been described. These outbreaks were caused by subtype IA strains circulating in this high-risk population. After years of low incidence, an outbreak among MSM in Hungary caused a significant increase in reported HAV infections in 2022.
Samples from 224 HAV IgM-positive patients diagnosed in 2022 were tested for HAV RNA and positive samples were genotyped by sequencing. In 171 patients a unique subtype IB virus was detected with 99.8–100% sequence identity in the VP1/P2A junction. It was distinct from previously published strains, but most closely related to an Egyptian isolate. Sequence analysis revealed one dominant and three minor variants based on VP1/P2A. Whole genome sequencing revealed limited variation among these variants, suggesting a recent common origin. Epidemiological data indicated that sexual transmission was driving the outbreak for most of the year, suggested by the high male to female ratio and the large number of coinfections with HIV and other sexually transmitted infections among the patients. The outbreak was also associated with a restaurant cluster, in which one of the variants was detected and frozen berries were implicated as the source of infections. The outbreak strain was also detected in other countries around Europe and remained frequently detectable in Hungary in 2023.
This study provides insights into the molecular and epidemiological characteristics of the described HAV outbreak. The results show that sequencing is not only useful in connecting cases to an outbreak, but also helps to clarify the relatedness of detected variants. Prevention strategies focusing on vulnerable communities may reduce the burden of HAV infections in the future.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .