{"title":"Modulation of gut microbiota composition due to early weaning stress induces depressive behavior during the juvenile period in mice.","authors":"Itsuka Kamimura, Eiji Miyauchi, Tadashi Takeuchi, Noriaki Tsuchiya, Kanami Tamura, Ayumi Uesugi, Hiroki Negishi, Takashi Taida, Tamotsu Kato, Masami Kawasumi, Miho Nagasawa, Kazutaka Mogi, Hiroshi Ohno, Takefumi Kikusui","doi":"10.1186/s42523-024-00322-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The gut microbiota plays an important role in the development of behavior and immunity in infants and juveniles. Early weaning (EW), a form of social stress in mice, leads to increased anxiety and an enhanced stress response in the hypothalamic-pituitary-adrenal axis during adulthood. Early life stress also modulates the immune system and increases vulnerability to infection. However, studies investigating the causal relationships among juvenile stress, microbiota changes, and immune and behavioral deficits are limited. Therefore, we hypothesized that EW alters gut microbiota composition and impairs the development of the nervous and immune systems.</p><p><strong>Results: </strong>EW mice moved longer distances in the marble-burying test and had longer immobility times in the tail suspension test than normal weaning (NW) mice. In parallel, the gut microbiome composition differed between NW and EW mice, and the abundance of Erysipelotrichacea in EW mice at 8 weeks of age was lower than that in NW mice. In an empirical study, germ-free mice colonized with the gut microbiota of EW mice (GF-EW mice) demonstrated higher depressive behavior than GF mice colonized with normal weaning microbiota (GF-NW mice). Immune cell profiles were also affected by the EW microbiota colonization; the number of CD4 + T cells in the spleen was reduced in GF-EW mice.</p><p><strong>Conclusion: </strong>Our results suggest that EW-induced alterations in the gut microbiota cause depressive behaviors and modulate the immune system.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00322-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The gut microbiota plays an important role in the development of behavior and immunity in infants and juveniles. Early weaning (EW), a form of social stress in mice, leads to increased anxiety and an enhanced stress response in the hypothalamic-pituitary-adrenal axis during adulthood. Early life stress also modulates the immune system and increases vulnerability to infection. However, studies investigating the causal relationships among juvenile stress, microbiota changes, and immune and behavioral deficits are limited. Therefore, we hypothesized that EW alters gut microbiota composition and impairs the development of the nervous and immune systems.
Results: EW mice moved longer distances in the marble-burying test and had longer immobility times in the tail suspension test than normal weaning (NW) mice. In parallel, the gut microbiome composition differed between NW and EW mice, and the abundance of Erysipelotrichacea in EW mice at 8 weeks of age was lower than that in NW mice. In an empirical study, germ-free mice colonized with the gut microbiota of EW mice (GF-EW mice) demonstrated higher depressive behavior than GF mice colonized with normal weaning microbiota (GF-NW mice). Immune cell profiles were also affected by the EW microbiota colonization; the number of CD4 + T cells in the spleen was reduced in GF-EW mice.
Conclusion: Our results suggest that EW-induced alterations in the gut microbiota cause depressive behaviors and modulate the immune system.
背景:肠道微生物群在婴儿和青少年的行为和免疫力发展过程中发挥着重要作用。早期断奶(EW)是小鼠的一种社会应激形式,会导致焦虑增加以及成年期下丘脑-垂体-肾上腺轴的应激反应增强。早期生活压力也会调节免疫系统并增加感染的可能性。然而,调查幼年压力、微生物群变化以及免疫和行为缺陷之间因果关系的研究非常有限。因此,我们假设 EW 会改变肠道微生物群的组成,并损害神经和免疫系统的发育:结果:与正常断奶(NW)小鼠相比,EW小鼠在埋大理石试验中移动的距离更长,在悬尾试验中不动的时间更长。与此同时,正常断奶小鼠和EW小鼠的肠道微生物组组成也有所不同,8周龄EW小鼠的Erysipelotrichacea丰度低于正常断奶小鼠。在一项经验性研究中,定植了 EW 小鼠肠道微生物群的无菌小鼠(GF-EW 小鼠)比定植了正常断奶微生物群的 GF 小鼠(GF-NW 小鼠)表现出更高的抑郁行为。免疫细胞图谱也受到 EW 微生物群定植的影响;GF-EW 小鼠脾脏中 CD4 + T 细胞的数量减少:我们的研究结果表明,EW诱导的肠道微生物群改变会导致抑郁行为并调节免疫系统。