{"title":"A phase field method for convective phase change problem preserving maximum bound principle","authors":"Hui Yao","doi":"10.1016/j.apnum.2024.06.012","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulations of convective solid-liquid phase change problems have long been a complex problem due to the movement of the solid-liquid interface layer, which leads to a free boundary problem. This work develops a convective phase change heat transfer model based on the phase field method. The governing equations consist of the incompressible Navier-Stokes-Boussinesq equations, the heat transfer equation, and the Allen-Cahn equation. The Navier-Stokes equations are penalised for imposing zero velocity within the solid region. For numerical methods, the mini finite element approach (<span>P1b-P1</span>) is used to solve the momentum equation spatially, the temperature and the phase field are approximated by the <span>P1b</span> elements. In the temporal discretization, the phase field and the temperature are decoupled from the momentum equation by using the finite difference method, forming a solvable linear system. A maximum bound principle for the phase field is derived, coming with an estimation of the tolerance of the time step size, which depends on the temperature range. This estimation guides the time step choice in the simulation. The program is developed within the <span>FreeFem++</span> framework, drawing on our previous work on phase field methods <span>[1]</span> and a mushy-region method toolbox for heat transfer <span>[2]</span>. The accuracy and effectiveness of the proposed method have been validated through real-world cases of melting and solidification with linear or nonlinear buyangcy force, respectively. The simulation results are in agreement with experiments in references.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"204 ","pages":"Pages 232-248"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001582/pdfft?md5=2072fce0ac49fb6e14195fb698625ef4&pid=1-s2.0-S0168927424001582-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001582","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical simulations of convective solid-liquid phase change problems have long been a complex problem due to the movement of the solid-liquid interface layer, which leads to a free boundary problem. This work develops a convective phase change heat transfer model based on the phase field method. The governing equations consist of the incompressible Navier-Stokes-Boussinesq equations, the heat transfer equation, and the Allen-Cahn equation. The Navier-Stokes equations are penalised for imposing zero velocity within the solid region. For numerical methods, the mini finite element approach (P1b-P1) is used to solve the momentum equation spatially, the temperature and the phase field are approximated by the P1b elements. In the temporal discretization, the phase field and the temperature are decoupled from the momentum equation by using the finite difference method, forming a solvable linear system. A maximum bound principle for the phase field is derived, coming with an estimation of the tolerance of the time step size, which depends on the temperature range. This estimation guides the time step choice in the simulation. The program is developed within the FreeFem++ framework, drawing on our previous work on phase field methods [1] and a mushy-region method toolbox for heat transfer [2]. The accuracy and effectiveness of the proposed method have been validated through real-world cases of melting and solidification with linear or nonlinear buyangcy force, respectively. The simulation results are in agreement with experiments in references.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.