β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson’s Disease

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-06-21 DOI:10.1021/acschemneuro.4c00263
Meiyan Xian, Jingwen Li, Tingting Liu, Kaiying Hou, Lin Sun* and Jianshe Wei*, 
{"title":"β-Synuclein Intermediates α-Synuclein Neurotoxicity in Parkinson’s Disease","authors":"Meiyan Xian,&nbsp;Jingwen Li,&nbsp;Tingting Liu,&nbsp;Kaiying Hou,&nbsp;Lin Sun* and Jianshe Wei*,&nbsp;","doi":"10.1021/acschemneuro.4c00263","DOIUrl":null,"url":null,"abstract":"<p >Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson’s disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00263","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease in the world, and synuclein is closely related to the onset and progression of PD. Synuclein is considered a therapeutic target for PD. Recent studies have found that abnormal aggregation of α-synuclein (α-Syn) in the brains of PD patients leads to mitochondrial dysfunction and neuroinflammation. Research in the field of neuroscience has confirmed that β-synuclein (β-Syn) also plays a role in Parkinson’s disease. However, there has been little research on the role mechanisms and interactions between β-Syn and α-Syn in PD. Therefore, the purpose of this study is to clarify the relationship between α-Syn, β-Syn, and PD and to explore the roles and interactions of β-Syn and α-Syn in PD.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
β-突触核蛋白是帕金森病中α-突触核蛋白神经毒性的中间体
帕金森病(PD)是世界上第二大最常见的与年龄有关的神经退行性疾病,而突触核蛋白与帕金森病的发病和进展密切相关。突触核蛋白被认为是帕金森病的治疗靶点。最近的研究发现,α-突触核蛋白(α-Syn)在帕金森病患者大脑中的异常聚集会导致线粒体功能障碍和神经炎症。神经科学领域的研究证实,β-突触核蛋白(β-Syn)在帕金森病中也发挥着作用。然而,关于β-Syn和α-Syn在帕金森病中的作用机制和相互作用的研究却很少。因此,本研究旨在阐明α-Syn、β-Syn和帕金森病之间的关系,并探讨β-Syn和α-Syn在帕金森病中的作用和相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
MiR-23b-3p Improves Brain Damage after Status Epilepticus by Reducing the Formation of Pathological High-Frequency Oscillations via Inhibition of cx43 in Rat Hippocampus. Issue Editorial Masthead Issue Publication Information A Snake Venom Peptide and Its Derivatives Prevent Aβ42 Aggregation and Eliminate Toxic Aβ42 Aggregates In Vitro. Dopamine Release Dynamics in the Nucleus Accumbens Are Modulated by the Timing of Electrical Stimulation Pulses When Applied to the Medial Forebrain Bundle and Medial Prefrontal Cortex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1