{"title":"SeedHit: A GPU Friendly Pre-Align Filtering Algorithm","authors":"Zhen Ju;Jingjing Zhang;Xuelei Li;Jintao Meng;Yanjie Wei","doi":"10.1109/TCBB.2024.3417517","DOIUrl":null,"url":null,"abstract":"The amount of genetic data generated by Next Generation Sequencing (NGS) technologies grows faster than Moore's law. This necessitates the development of efficient NGS data processing and analysis algorithms. A filter before the computationally-costly analysis step can significantly reduce the run time of the NGS data analysis. As GPUs are orders of magnitude more powerful than CPUs, this paper proposes a GPU-friendly pre-align filtering algorithm named SeedHit for the fast processing of NGS data. Inspired by BLAST, SeedHit counts seed hits between two sequences to determine their similarity. In SeedHit, a nucleic acid in a gene sequence is presented in binary format. By packaging data and generating a lookup table that fits into the L1 cache, SeedHit is GPU-friendly and high-throughput. Using three 16 s rRNA datasets from Greengenes as input SeedHit can reject 84%–89% dissimilar sequence pairs on average when the similarity is 0.9–0.99. The throughput of SeedHit achieved 1 T/s (Tera base per second) on 3080 Ti. Compared with the other two GPU-based filtering algorithms, GateKeeper and SneakySnake, SeedHit has the highest rejection rate and throughput. By incorporating SeedHit into our in-house clustering algorithm nGIA, the modified nGIA achieved a 1.6–2.1 times speedup compared to the original version.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"1794-1802"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10568393/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The amount of genetic data generated by Next Generation Sequencing (NGS) technologies grows faster than Moore's law. This necessitates the development of efficient NGS data processing and analysis algorithms. A filter before the computationally-costly analysis step can significantly reduce the run time of the NGS data analysis. As GPUs are orders of magnitude more powerful than CPUs, this paper proposes a GPU-friendly pre-align filtering algorithm named SeedHit for the fast processing of NGS data. Inspired by BLAST, SeedHit counts seed hits between two sequences to determine their similarity. In SeedHit, a nucleic acid in a gene sequence is presented in binary format. By packaging data and generating a lookup table that fits into the L1 cache, SeedHit is GPU-friendly and high-throughput. Using three 16 s rRNA datasets from Greengenes as input SeedHit can reject 84%–89% dissimilar sequence pairs on average when the similarity is 0.9–0.99. The throughput of SeedHit achieved 1 T/s (Tera base per second) on 3080 Ti. Compared with the other two GPU-based filtering algorithms, GateKeeper and SneakySnake, SeedHit has the highest rejection rate and throughput. By incorporating SeedHit into our in-house clustering algorithm nGIA, the modified nGIA achieved a 1.6–2.1 times speedup compared to the original version.
期刊介绍:
IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system