{"title":"Modification of mesenchymal stromal cells with silibinin-loaded PLGA nanoparticles improves their therapeutic efficacy for cutaneous wound repair","authors":"Ningfei Shen MSc , Anna Polyanskaya MSc , Xiaoli Qi PhD , Aya Al Othman MSc , Anastasia Permyakova PhD , Marina Volkova PhD , Alexandre Mezentsev PhD , Mikhail Durymanov PhD","doi":"10.1016/j.nano.2024.102767","DOIUrl":null,"url":null,"abstract":"<div><p>The use of mesenchymal stromal cells (MSCs) for treating chronic inflammatory disorders, wounds, and ischemia-reperfusion injuries has shown improved healing efficacy. However, the poor survival rate of transplanted cells due to oxidative stress in injured or inflamed tissue remains a significant concern for MSC-based therapies. In this study, we developed a new approach to protect MSCs from oxidative stress, thereby improving their survival in a wound microenvironment and enhancing their therapeutic effect. We produced PLGA nanoparticles loaded with the cytoprotective phytochemical silibinin (SBN), and used them to modify MSCs. Upon internalization, these nanoformulations released SBN, activating the Nrf2/ARE signaling pathway, resulting in threefold reduction in intracellular ROS content and improved cell survival under oxidative stress conditions. Modification of MSCs with SBN-loaded PLGA nanoparticles increased their survival upon transplantation to full-thickness cutaneous wounds and improved wound healing. This study suggests that MSC modification with cytoprotective nanoparticles could be a promising approach for improving wound healing.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"61 ","pages":"Article 102767"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000364","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of mesenchymal stromal cells (MSCs) for treating chronic inflammatory disorders, wounds, and ischemia-reperfusion injuries has shown improved healing efficacy. However, the poor survival rate of transplanted cells due to oxidative stress in injured or inflamed tissue remains a significant concern for MSC-based therapies. In this study, we developed a new approach to protect MSCs from oxidative stress, thereby improving their survival in a wound microenvironment and enhancing their therapeutic effect. We produced PLGA nanoparticles loaded with the cytoprotective phytochemical silibinin (SBN), and used them to modify MSCs. Upon internalization, these nanoformulations released SBN, activating the Nrf2/ARE signaling pathway, resulting in threefold reduction in intracellular ROS content and improved cell survival under oxidative stress conditions. Modification of MSCs with SBN-loaded PLGA nanoparticles increased their survival upon transplantation to full-thickness cutaneous wounds and improved wound healing. This study suggests that MSC modification with cytoprotective nanoparticles could be a promising approach for improving wound healing.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.