Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism.

IF 4.9 Q1 MICROBIOLOGY Animal microbiome Pub Date : 2024-06-21 DOI:10.1186/s42523-024-00323-6
Yang Li, Jiaqi He, Lijia Zhang, Haoyu Liu, Meng Cao, Yan Lin, Shengyu Xu, Lianqiang Che, Zhengfeng Fang, Bin Feng, Jian Li, Yong Zhuo, De Wu
{"title":"Improvement of insulin sensitivity by dietary fiber consumption during late pregnant sows is associated with gut microbiota regulation of tryptophan metabolism.","authors":"Yang Li, Jiaqi He, Lijia Zhang, Haoyu Liu, Meng Cao, Yan Lin, Shengyu Xu, Lianqiang Che, Zhengfeng Fang, Bin Feng, Jian Li, Yong Zhuo, De Wu","doi":"10.1186/s42523-024-00323-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation.</p><p><strong>Results: </strong>Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration.</p><p><strong>Conclusions: </strong>DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00323-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Dietary fiber (DF) consumption was reported to improve insulin sensitivity, change the tryptophan metabolism, and alter the gut microbiota. Herein, this study aimed to investigate the effects of DF consumption on insulin sensitivity, tryptophan metabolism, and gut microbiota composition in sows during late pregnancy, and explore the relationship between tryptophan metabolites and insulin sensitivity regulated by DF supplementation.

Results: Twelve sows were randomly assigned to two dietary treatment groups (six/group): the low-fiber (LF) group, which was fed a basal diet, and the high-fiber (HF) group, which was fed the basal diet supplemented with 22.60 g/kg inulin and 181.60 g/kg cellulose. During late pregnancy, meal test, glucose tolerance test, and insulin challenge test were used to investigate the insulin sensitivity of sows, using the percutaneous brachiocephalic vein catheterization technique. High DF consumption resulted in improved insulin sensitivity, especially during the second and third trimesters, and promoted serotonin production from tryptophan. Additionally, plasma serotonin concentration was positively correlated with the insulin sensitivity index during late pregnancy. Moreover, DF consumption elevated fecal short-chain fatty acid (SCFA) concentrations, altered fecal microbial diversity, and increased the abundances of Rikenellaceae_RC9_gut_group, Alloprevotella, Parabacteroides, Roseburia, and Sphaerochaeta, which were positively correlated to plasma serotonin concentration.

Conclusions: DF consumption improved insulin sensitivity during late pregnancy in sows, which improved microbial diversity in fecal samples and increased fecal SCFA concentrations, resulting in a positive correlation with plasma serotonin level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
妊娠晚期母猪通过食用膳食纤维改善胰岛素敏感性与肠道微生物群对色氨酸代谢的调节有关。
背景:据报道,食用膳食纤维(DF)可改善胰岛素敏感性、改变色氨酸代谢和肠道微生物群。本研究旨在探讨妊娠晚期母猪食用膳食纤维对胰岛素敏感性、色氨酸代谢和肠道微生物群组成的影响,并探讨补充膳食纤维调节色氨酸代谢产物与胰岛素敏感性之间的关系:将 12 头母猪随机分配到两个日粮处理组(6 头/组):低纤维(LF)组,饲喂基础日粮;高纤维(HF)组,饲喂添加了 22.60 克/千克菊粉和 181.60 克/千克纤维素的基础日粮。在妊娠晚期,采用经皮肱脑静脉导管技术,通过进餐试验、葡萄糖耐量试验和胰岛素挑战试验来研究母猪的胰岛素敏感性。大量摄入 DF 提高了胰岛素敏感性,尤其是在妊娠的第二和第三个三个月,并促进了色氨酸产生血清素。此外,血浆中血清素的浓度与妊娠晚期的胰岛素敏感性指数呈正相关。此外,摄入DF可提高粪便中短链脂肪酸(SCFA)的浓度,改变粪便微生物的多样性,增加Rikenellaceae_RC9_gut_group、Alloprevotella、Parabacteroides、Roseburia和Sphaerochaeta的丰度,而这些微生物与血浆中血清素的浓度呈正相关:结论:食用DF可提高母猪妊娠晚期的胰岛素敏感性,从而改善粪便样本中的微生物多样性并增加粪便中的SCFA浓度,从而与血浆血清素水平呈正相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Diet affects reproductive development and microbiota composition in honey bees. The role of gut microbiota in a generalist, golden snub-nosed monkey, adaptation to geographical diet change. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Programming rumen microbiome development in calves with the anti-methanogenic compound 3-NOP. Ruminant microbiome data are skewed and unFAIR, undermining their usefulness for sustainable production improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1