Xiang Li , Qiang Deng , Lili Chen , Guiyao Liu , Xinrong Shi , Thomas Ryan Lock , Robert L. Kallenbach , Zhiyou Yuan
{"title":"Plant nutrient stoichiometry appears out of sync from soil: Increasing influences of changing climate on the grassland in inner Mongolia, China","authors":"Xiang Li , Qiang Deng , Lili Chen , Guiyao Liu , Xinrong Shi , Thomas Ryan Lock , Robert L. Kallenbach , Zhiyou Yuan","doi":"10.1016/j.actao.2024.104011","DOIUrl":null,"url":null,"abstract":"<div><p>Extremes in weather episodes seem to be the new normal. We need to better understand how changing climatic conditions alter plant growth in grasslands, especially macro nutrient uptake and stoichiometry. However, few studies have examined how warmer/colder or wetter/drier climates influence the nutrient coupling between plants and soils at the ecosystem level. Here, we investigated the changes in carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometric ratios in plants and soils from 65 grassland sites along a geographic gradient in northern China. Results showed that soil C, N and P were negatively correlated with temperature and aridity. Plant N was positively correlated with temperature and aridity, but plant P was negatively correlated with temperature and aridity. Plant C had no significant relationship with either aridity or temperature. Both temperature and aridity were positively correlated with C:N, but negatively correlated with C:P and N:P in soils. The ratio of plant C:N was negatively correlated with aridity, while plant C:P was positively correlated with temperature. Plant N:P was positively correlated with temperature and aridity. Our findings imply that the often-found positive relationships between plant and soil nutrients at one site might not apply to a broad geographic scale with varying climatic conditions, likely because of the “dilution effect” and disparate plant nutrient utilization strategies. It is conceivable that rapid climate shifts and the resulting changes in element availability, turnover rates, absorption, and use efficiency might cause desynchrony of C, N, and P cycles between plants and soils.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1146609X2400033X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Extremes in weather episodes seem to be the new normal. We need to better understand how changing climatic conditions alter plant growth in grasslands, especially macro nutrient uptake and stoichiometry. However, few studies have examined how warmer/colder or wetter/drier climates influence the nutrient coupling between plants and soils at the ecosystem level. Here, we investigated the changes in carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometric ratios in plants and soils from 65 grassland sites along a geographic gradient in northern China. Results showed that soil C, N and P were negatively correlated with temperature and aridity. Plant N was positively correlated with temperature and aridity, but plant P was negatively correlated with temperature and aridity. Plant C had no significant relationship with either aridity or temperature. Both temperature and aridity were positively correlated with C:N, but negatively correlated with C:P and N:P in soils. The ratio of plant C:N was negatively correlated with aridity, while plant C:P was positively correlated with temperature. Plant N:P was positively correlated with temperature and aridity. Our findings imply that the often-found positive relationships between plant and soil nutrients at one site might not apply to a broad geographic scale with varying climatic conditions, likely because of the “dilution effect” and disparate plant nutrient utilization strategies. It is conceivable that rapid climate shifts and the resulting changes in element availability, turnover rates, absorption, and use efficiency might cause desynchrony of C, N, and P cycles between plants and soils.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.