Electrically tunable non-radiative lifetime in WS2/WSe2 heterostructures†

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-21 DOI:10.1039/D4NR01982B
Anran Wang, Xingguang Wu, Siwen Zhao, Zheng Vitto Han, Yi Shi, Giulio Cerullo and Fengqiu Wang
{"title":"Electrically tunable non-radiative lifetime in WS2/WSe2 heterostructures†","authors":"Anran Wang, Xingguang Wu, Siwen Zhao, Zheng Vitto Han, Yi Shi, Giulio Cerullo and Fengqiu Wang","doi":"10.1039/D4NR01982B","DOIUrl":null,"url":null,"abstract":"<p >Van der Waals heterostructures based on transition metal dichalcogenides (TMDs) have emerged as excellent candidates for next-generation optoelectronics and valleytronics, due to their fascinating physical properties. The understanding and active control of the relaxation dynamics of heterostructures play a crucial role in device design and optimization. Here, we investigate the back-gate modulation of exciton dynamics in a WS<small><sub>2</sub></small>/WSe<small><sub>2</sub></small> heterostructure by combining time-resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) at cryogenic temperatures. We find that the non-radiative relaxation lifetimes of photocarriers in heterostructures can be electrically controlled for samples with different twist-angles, whereas such lifetime tuning is not present in standalone monolayers. We attribute such an observation to doping-controlled competition between interlayer and intralayer recombination pathways in high-quality WS<small><sub>2</sub></small>/WSe<small><sub>2</sub></small> samples. The simultaneous measurement of TRPL and TAS lifetimes within the same sample provides additional insight into the influence of coexisting excitons and background carriers on the photo-response, and points to the potential of tailoring light–matter interactions in TMD heterostructures.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01982b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Van der Waals heterostructures based on transition metal dichalcogenides (TMDs) have emerged as excellent candidates for next-generation optoelectronics and valleytronics, due to their fascinating physical properties. The understanding and active control of the relaxation dynamics of heterostructures play a crucial role in device design and optimization. Here, we investigate the back-gate modulation of exciton dynamics in a WS2/WSe2 heterostructure by combining time-resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) at cryogenic temperatures. We find that the non-radiative relaxation lifetimes of photocarriers in heterostructures can be electrically controlled for samples with different twist-angles, whereas such lifetime tuning is not present in standalone monolayers. We attribute such an observation to doping-controlled competition between interlayer and intralayer recombination pathways in high-quality WS2/WSe2 samples. The simultaneous measurement of TRPL and TAS lifetimes within the same sample provides additional insight into the influence of coexisting excitons and background carriers on the photo-response, and points to the potential of tailoring light–matter interactions in TMD heterostructures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WS2/WSe2 异质结构中的电可调非辐射寿命
基于过渡金属二卤化物(TMDs)的范德华异质结构因其迷人的物理特性,已成为下一代光电子学和光谷电子学的绝佳候选材料。了解并积极控制异质结构的弛豫动力学在器件设计和优化中起着至关重要的作用。在此,我们结合低温下的时间分辨光致发光(TRPL)和瞬态吸收光谱(TAS),研究了 WS2/WSe2 异质结构中激子动力学的后栅调制。我们发现,异质结构中光电载流子的非辐射弛豫寿命可以通过不同捻角的样品进行电学控制,而这种寿命调谐在独立单层中并不存在。我们将这一观察结果归因于高质量 WS2/WSe2 样品中层间和层内重组途径之间受掺杂控制的竞争。在同一样品中同时测量 TRPL 和 TAS 的寿命,可以进一步了解共存激子和背景载流子对光响应的影响,并指出在 TMD 异质结构中定制光物质相互作用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1