A benchmarking study of quantum algorithms for combinatorial optimization

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-06-22 DOI:10.1038/s41534-024-00856-3
Krishanu Sankar, Artur Scherer, Satoshi Kako, Sam Reifenstein, Navid Ghadermarzy, Willem B. Krayenhoff, Yoshitaka Inui, Edwin Ng, Tatsuhiro Onodera, Pooya Ronagh, Yoshihisa Yamamoto
{"title":"A benchmarking study of quantum algorithms for combinatorial optimization","authors":"Krishanu Sankar, Artur Scherer, Satoshi Kako, Sam Reifenstein, Navid Ghadermarzy, Willem B. Krayenhoff, Yoshitaka Inui, Edwin Ng, Tatsuhiro Onodera, Pooya Ronagh, Yoshihisa Yamamoto","doi":"10.1038/s41534-024-00856-3","DOIUrl":null,"url":null,"abstract":"<p>We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use M<span>ax</span>C<span>ut</span> problems as a reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. For each algorithm, we analyze its performance in solving two types of M<span>ax</span>C<span>ut</span> problems: weighted graph instances with randomly generated edge weights attaining 21 equidistant values from −1 to 1; and randomly generated Sherrington–Kirkpatrick (SK) spin glass instances. We empirically find a significant performance advantage for the studied MFB-CIM in comparison to the other two algorithms. We empirically observe a sub-exponential scaling for the median TTS for the MFB-CIM, in comparison to the almost exponential scaling for DAQC and the proven <span>\\(\\widetilde{{{{\\mathcal{O}}}}}\\left(\\sqrt{{2}^{n}}\\right)\\)</span> scaling for DH-QMF. We conclude that the MFB-CIM outperforms DAQC and DH-QMF in solving M<span>ax</span>C<span>ut</span> problems.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"60 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00856-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the performance scaling of three quantum algorithms for combinatorial optimization: measurement-feedback coherent Ising machines (MFB-CIM), discrete adiabatic quantum computation (DAQC), and the Dürr–Høyer algorithm for quantum minimum finding (DH-QMF) that is based on Grover’s search. We use MaxCut problems as a reference for comparison, and time-to-solution (TTS) as a practical measure of performance for these optimization algorithms. For each algorithm, we analyze its performance in solving two types of MaxCut problems: weighted graph instances with randomly generated edge weights attaining 21 equidistant values from −1 to 1; and randomly generated Sherrington–Kirkpatrick (SK) spin glass instances. We empirically find a significant performance advantage for the studied MFB-CIM in comparison to the other two algorithms. We empirically observe a sub-exponential scaling for the median TTS for the MFB-CIM, in comparison to the almost exponential scaling for DAQC and the proven \(\widetilde{{{{\mathcal{O}}}}}\left(\sqrt{{2}^{n}}\right)\) scaling for DH-QMF. We conclude that the MFB-CIM outperforms DAQC and DH-QMF in solving MaxCut problems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组合优化量子算法基准研究
我们研究了三种用于组合优化的量子算法的性能缩放:测量反馈相干伊辛机(MFB-CIM)、离散绝热量子计算(DAQC)以及基于格罗弗搜索的量子最小值查找杜尔-霍耶算法(DH-QMF)。我们将 MaxCut 问题作为比较的参考,并将求解时间(TTS)作为衡量这些优化算法性能的实用指标。对于每种算法,我们都分析了其在解决两类 MaxCut 问题时的性能:加权图实例,随机生成的边权重达到 21 个从 -1 到 1 的等距值;以及随机生成的 Sherrington-Kirkpatrick(SK)旋转玻璃实例。我们根据经验发现,与其他两种算法相比,所研究的 MFB-CIM 具有显著的性能优势。我们根据经验观察到,MFB-CIM 的中位 TTS 呈亚指数缩放,而 DAQC 几乎呈指数缩放,DH-QMF 则呈已证实的 \(\widetilde{{{{\mathcal{O}}}}}\left(\sqrt{2}^{n}\}right)\) 缩放。我们的结论是,在解决 MaxCut 问题时,MFB-CIM 的性能优于 DAQC 和 DH-QMF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
High-dimensional entanglement witnessed by correlations in arbitrary bases Realizing ultrahigh capacity quantum superdense coding on quantum photonic chip Quantum-enhanced dark matter detection with in-cavity control: mitigating the Rayleigh curse Halving the cost of quantum algorithms with randomization Quantum Zeno Monte Carlo for computing observables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1