{"title":"Fe-S cluster biosynthesis and maturation: Mass spectrometry-based methods advancing the field","authors":"Shelby D. Oney-Hawthorne, David P. Barondeau","doi":"10.1016/j.bbamcr.2024.119784","DOIUrl":null,"url":null,"abstract":"<div><p>Iron‑sulfur (Fe<img>S) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of Fe<img>S cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these Fe<img>S protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate Fe<img>S cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in Fe<img>S protein studies made possible by MS methodology and contribute an outlook for its role in the field.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 7","pages":"Article 119784"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001277","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Iron‑sulfur (FeS) clusters are inorganic protein cofactors that perform essential functions in many physiological processes. Spectroscopic techniques have historically been used to elucidate details of FeS cluster type, their assembly and transfer, and changes in redox and ligand binding properties. Structural probes of protein topology, complex formation, and conformational dynamics are also necessary to fully understand these FeS protein systems. Recent developments in mass spectrometry (MS) instrumentation and methods provide new tools to investigate FeS cluster and structural properties. With the unique advantage of sampling all species in a mixture, MS-based methods can be utilized as a powerful complementary approach to probe native dynamic heterogeneity, interrogate protein folding and unfolding equilibria, and provide extensive insight into protein binding partners within an entire proteome. Here, we highlight key advances in FeS protein studies made possible by MS methodology and contribute an outlook for its role in the field.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.