{"title":"TRPM8 affects relative “cooling and heating” of subcellular organelles in microglia in a context-dependent manner","authors":"Deep Shikha , Young-Tae Chang , Chandan Goswami","doi":"10.1016/j.biocel.2024.106615","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoregulation and thermal homeostasis at the cellular and subcellular organelle level are poorly understood events. In this work, we used BV2, a microglial cell line, and a series of thermo-sensitive subcellular organelle-specific probes to analyze the relative changes in the spatio-temporal temperatures of different subcellular organelles, both qualitatively and quantitatively. These methodologies allowed us to understand the thermal relationship of different subcellular organelles also. We modulated BV2 cells by pharmacological application of activator or inhibitor of TRPM8 ion channel (a cold-sensitive ion channel) and/or by treating the cells with LPS, a molecule that induces pathogen-associated molecular patterns (PAMPs) signaling. We demonstrate that the temperatures of individual organelles remain variable within a physiological range, yet vary in different conditions. We also demonstrate that treating BV2 cells by TRPM8 modulators and/or LPS alters the organelle temperatures in a specific and context-dependent manner. We show that TRPM8 modulation and/or LPS can alter the relationship of mitochondrial membrane potential to mitochondrial temperature. Our work suggests that mitochondrial temperature positively influences ER temperature and negatively influences Golgi temperature. Golgi temperature positively influences membrane temperature. This understanding of thermal relationships may be crucial for dissecting cellular structures, function, and stress signaling and may be relevant for different diseases.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001079","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Thermoregulation and thermal homeostasis at the cellular and subcellular organelle level are poorly understood events. In this work, we used BV2, a microglial cell line, and a series of thermo-sensitive subcellular organelle-specific probes to analyze the relative changes in the spatio-temporal temperatures of different subcellular organelles, both qualitatively and quantitatively. These methodologies allowed us to understand the thermal relationship of different subcellular organelles also. We modulated BV2 cells by pharmacological application of activator or inhibitor of TRPM8 ion channel (a cold-sensitive ion channel) and/or by treating the cells with LPS, a molecule that induces pathogen-associated molecular patterns (PAMPs) signaling. We demonstrate that the temperatures of individual organelles remain variable within a physiological range, yet vary in different conditions. We also demonstrate that treating BV2 cells by TRPM8 modulators and/or LPS alters the organelle temperatures in a specific and context-dependent manner. We show that TRPM8 modulation and/or LPS can alter the relationship of mitochondrial membrane potential to mitochondrial temperature. Our work suggests that mitochondrial temperature positively influences ER temperature and negatively influences Golgi temperature. Golgi temperature positively influences membrane temperature. This understanding of thermal relationships may be crucial for dissecting cellular structures, function, and stress signaling and may be relevant for different diseases.