Anoob Prakash, Thibaut Capblancq, Kathryn Shallows, David Saville, Deborah Landau, Chad Landress, Tal Jacobs, Stephen Keller
{"title":"Bringing genomics to the field: An integrative approach to seed sourcing for forest restoration","authors":"Anoob Prakash, Thibaut Capblancq, Kathryn Shallows, David Saville, Deborah Landau, Chad Landress, Tal Jacobs, Stephen Keller","doi":"10.1002/aps3.11600","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Global anthropogenic change threatens the health and productivity of forest ecosystems. Assisted migration and reforestation are tools to help mitigate these impacts. However, questions remain about how to approach sourcing seeds to ensure high establishment and future adaptability.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Using exome-capture sequencing, we demonstrate a computational approach to finding the best <i>n</i>-sets from a candidate list of seed sources that collectively achieve high genetic diversity (GD) and minimal genetic load (GL), while also increasing evolvability in quantitative traits. The benefits of this three-part strategy (diversity-load-evolvability) are to increase near-term establishment success while also boosting evolutionary potential to respond to future stressors. Members of The Nature Conservancy and the Central Appalachian Spruce Restoration Initiative planted 58,000 seedlings across 255 acres. A subset of seedlings was monitored for establishment success and variation in growth.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The results show gains in GD relative to GL and increases in quantitative genetic variation in seedling growth for pooled vs. single-source restoration. No single “super source” was observed across planting sites; rather, monitoring results demonstrate that pooling of multiple sources helps achieve higher GD:GL and evolvability.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>Our study shows the potential for integrating genomics into local-scale restoration and the importance of building partnerships between academic researchers and applied conservation managers.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11600","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise
Global anthropogenic change threatens the health and productivity of forest ecosystems. Assisted migration and reforestation are tools to help mitigate these impacts. However, questions remain about how to approach sourcing seeds to ensure high establishment and future adaptability.
Methods
Using exome-capture sequencing, we demonstrate a computational approach to finding the best n-sets from a candidate list of seed sources that collectively achieve high genetic diversity (GD) and minimal genetic load (GL), while also increasing evolvability in quantitative traits. The benefits of this three-part strategy (diversity-load-evolvability) are to increase near-term establishment success while also boosting evolutionary potential to respond to future stressors. Members of The Nature Conservancy and the Central Appalachian Spruce Restoration Initiative planted 58,000 seedlings across 255 acres. A subset of seedlings was monitored for establishment success and variation in growth.
Results
The results show gains in GD relative to GL and increases in quantitative genetic variation in seedling growth for pooled vs. single-source restoration. No single “super source” was observed across planting sites; rather, monitoring results demonstrate that pooling of multiple sources helps achieve higher GD:GL and evolvability.
Discussion
Our study shows the potential for integrating genomics into local-scale restoration and the importance of building partnerships between academic researchers and applied conservation managers.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.