Investigation and development of photocathodes using polyaniline Encapsulated Ti3C2Tx MXene nanosheets for dye-sensitized solar cells†

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-24 DOI:10.1039/D4NR01057D
Suruthi Priya Nagalingam, Saravanan Pandiaraj, Abdullah. N. Alodhayb and Andrews Nirmala Grace
{"title":"Investigation and development of photocathodes using polyaniline Encapsulated Ti3C2Tx MXene nanosheets for dye-sensitized solar cells†","authors":"Suruthi Priya Nagalingam, Saravanan Pandiaraj, Abdullah. N. Alodhayb and Andrews Nirmala Grace","doi":"10.1039/D4NR01057D","DOIUrl":null,"url":null,"abstract":"<p >In the current study, polyaniline (PANI) modified two-dimensional Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> MXene composites (PANI-Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>) are exploited as photocathodes in dye-sensitized solar cells (DSSCs). The study revealed that incorporating PANI into Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> improved the material's electrochemical properties, owing to the presence of amino groups in PANI that enhanced the material's electrical conductivity and thereby facilitated more rapid ion transport. In addition, PANI enhanced the surface wettability of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>, resulting in an increase in the number of electroactive sites. The presence of PANI molecules in the interlayer and on the surface of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> was confirmed through X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), and X-ray photoelectron spectroscopy (XPS). Subsequently, electrochemical analysis of the PANI-Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> photocathode or counter electrode (CE) revealed a commendable electrocatalytic activity with the iodide/triiodide electrolyte, a favourable charge transfer kinetics, and a charge transfer resistance as low as platinum. Additionally, at AM 1.5G, the performance of the DSSC constructed using the thermally decomposed Pt-CE was 8.3% when subjected to simulated 1 sun light, whereas the efficiency of the DSSC constructed using the as-prepared composite material was 6.9% under corresponding conditions. PANI-Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> as the photocathode (CE) in a DSSC showed a higher power conversion efficiency (PCE) improvement than PANI CE and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> CE DSSCs, emphasizing its potent catalytic activity and quick mass transport of electron capability. By capitalizing on the conductivity and electrocatalytic property of the two components, the as-fabricated PANI-Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> photocathode significantly increased the overall PCE of DSSCs. Furthermore, the DSSC utilizing the PANI-Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> CE demonstrated exceptional reproducibility and stability. This underscores its consistently high performance and significant resistance to corrosion in the iodide/triiodide redox electrolyte environment. Overall, these findings show that the PANI-Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> composite has the potential to be a competitive alternative to platinum-based CE materials for the development of DSSCs with exceptional performance.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01057d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, polyaniline (PANI) modified two-dimensional Ti3C2Tx MXene composites (PANI-Ti3C2Tx) are exploited as photocathodes in dye-sensitized solar cells (DSSCs). The study revealed that incorporating PANI into Ti3C2Tx improved the material's electrochemical properties, owing to the presence of amino groups in PANI that enhanced the material's electrical conductivity and thereby facilitated more rapid ion transport. In addition, PANI enhanced the surface wettability of Ti3C2Tx, resulting in an increase in the number of electroactive sites. The presence of PANI molecules in the interlayer and on the surface of Ti3C2Tx was confirmed through X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), and X-ray photoelectron spectroscopy (XPS). Subsequently, electrochemical analysis of the PANI-Ti3C2Tx photocathode or counter electrode (CE) revealed a commendable electrocatalytic activity with the iodide/triiodide electrolyte, a favourable charge transfer kinetics, and a charge transfer resistance as low as platinum. Additionally, at AM 1.5G, the performance of the DSSC constructed using the thermally decomposed Pt-CE was 8.3% when subjected to simulated 1 sun light, whereas the efficiency of the DSSC constructed using the as-prepared composite material was 6.9% under corresponding conditions. PANI-Ti3C2Tx as the photocathode (CE) in a DSSC showed a higher power conversion efficiency (PCE) improvement than PANI CE and Ti3C2Tx CE DSSCs, emphasizing its potent catalytic activity and quick mass transport of electron capability. By capitalizing on the conductivity and electrocatalytic property of the two components, the as-fabricated PANI-Ti3C2Tx photocathode significantly increased the overall PCE of DSSCs. Furthermore, the DSSC utilizing the PANI-Ti3C2Tx CE demonstrated exceptional reproducibility and stability. This underscores its consistently high performance and significant resistance to corrosion in the iodide/triiodide redox electrolyte environment. Overall, these findings show that the PANI-Ti3C2Tx composite has the potential to be a competitive alternative to platinum-based CE materials for the development of DSSCs with exceptional performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究和开发用于染料敏化太阳能电池的聚苯胺封装 Ti3C2Tx MXene 纳米片的光电阴极。
在当前的研究中,聚苯胺(PANI)修饰的二维 Ti3C2Tx MXene 复合材料(PANI-Ti3C2Tx)被用作染料敏化太阳能电池(DSSC)的光电阴极。研究发现,在 Ti3C2Tx 中加入 PANI 可改善材料的电化学性能,这是因为 PANI 中存在的氨基增强了材料的导电性,从而促进了更快的离子传输。此外,PANI 还增强了 Ti3C2Tx 的表面润湿性,从而增加了电活性位点的数量。通过 X 射线衍射 (XRD)、扫描电子显微镜与能量色散 X 射线光谱 (SEM-EDX) 和 X 射线光电子能谱 (XPS) 确认了 PANI 分子存在于 Ti3C2Tx 的层间和表面。随后,对 PANI-Ti3C2Tx 光阴极或对电极(CE)进行的电化学分析表明,在碘化物/三碘化物电解液中具有值得称赞的电催化活性,电荷转移动力学良好,电荷转移电阻低至铂。此外,在 AM 1.5G 的模拟太阳光下,使用热分解铂-氯乙烯构建的 DSSC 的性能为 8.3%,而在相应条件下使用制备的复合材料构建的 DSSC 的效率为 6.9%。与 PANI CE 和 Ti3C2Tx CE DSSC 相比,PANI-Ti3C2Tx 作为 DSSC 中的光电阴极(CE)显示出更高的功率转换效率(PCE),这凸显了其强大的催化活性和快速大量传输电子的能力。利用这两种成分的导电性和电催化特性,制备的 PANI-Ti3C2Tx 阴极显著提高了 DSSC 的整体 PCE。此外,使用 PANI-Ti3C2Tx CE 的 DSSC 还表现出卓越的可重复性和稳定性。这凸显了其在碘/三碘氧化还原电解质环境中始终如一的高性能和显著的抗腐蚀性。总之,这些研究结果表明,PANI-Ti3C2Tx 复合材料有望成为铂基 CE 材料的竞争性替代品,用于开发具有优异性能的 DSSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
CD56-targeted in vivo genetic engineering of natural killer cells mediates immunotherapy for acute myeloid leukemia. High Sensing Performance Hybrid Nanostructure Constructed via Nanoscale Confined Motion of Nanofiber and Nanoplatelet in Flexible Nanocomposite Sensor Nanoscopic visualization of microgel-immobilized cytochrome P450 enzymes and their local activity Metamagnetic transition and meta-stable magnetic state in Co-dopedFe3GaTe2 Perspectives on sustainable and efficient routes of nanoparticle synthesis: an exhaustive review on conventional and microplasma-assisted techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1